• Title/Summary/Keyword: Vertical density

Search Result 797, Processing Time 0.03 seconds

An Analysis of Electric-field Density into Mountain Area Using DTED (디지털 지도를 이용한 산악지형의 전계강도 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo;Park, Young-Chul;Kim, Min-Nyum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.852-857
    • /
    • 2006
  • This paper presents a precision method to calculate the electric field density of mountain area using digital terrain elevation data(DTED). Generally we calculate the electric field density of a point adding a direct field density and horizontal reflection field density between two points. In this paper, we consider a vertical reflection field density from vertical surface near the wave propagation line between transmitter and receiver. The vertical reflection electric field have different propagation path and polarization from a horizontal reflection field. And the total electric field density adding horizontal field density and vertical reflection value is more accurate than a direct path electrical field density or direct field density adding a horizontal reflection field density.

  • PDF

Dynamic Behaviors of Shelly Sand in Cyclic Simple Shear Test (반복단순전단 시험에 의한 패각질 모래의 동적 거동)

  • Yoon, Yeo-Won;Yoon, Kil-Lim;Choi, Jae-Kwon;Kim, Jae-Kwon;Kim, Seung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1358-1366
    • /
    • 2006
  • In order to study the effects of shell contents on the liquefaction resistance of the shelly sand, NGI cyclic simple shear tests were performed for the shelly sands with shell contents of 0%, 5%, 10%, 20% and 30% under the effective vertical stress of 50kPa, 100kPa and 150kPa for 40% and 55% of relative density, respectively. Cyclic simple shear test results showed that for the low effective vertical stress, liquefaction resistance increased rapidly with the increase of shell contents in both 40% and 55% relative density. On the other hand, for the high effective vertical stress, the liquefaction resistance increased slightly in 40% relative density whereas the resistance was almost same in 55% relative density. Liquefaction resistance decreased with increasing effective vertical stress for both 40% and 55% relative density. In the same effective vertical stress and shell contents, liquefaction resistance increased with the increase of relative density of sands.

  • PDF

Density-surfactant-motivated removal of DNAPL trapped in dead-end fractures

  • 여인욱;이강근;지성훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.51-54
    • /
    • 2003
  • Three kinds of experiments were conducted to test existing methods and develop an effective methodology for the remediation of DNAPL trapped in vertical dead-end fractures. A water-flushing method failed to remove TCE from vertical dead-end fractures where no fluid flow occurs. A water-flushing experiment implies that existing remediation methods, utilizing water-based remedial fluid such as surfactant-enhanced method, have difficulty in removing DNAPL trapped from the vertical downward dead-end fractures, because of no water flow through dead-end fractures, capillary, and gravity forces. Fluid denser than TCE was injected into the fracture network, but did not displace TCE from the vertical dead-end fractures. Base(B on the analysis of the experiments, the increase in the density of the dense fluid and the addition of surfactant to the dense fluid were suggested, and this composite dense fluid with surfactant effectively removed TCE from the vertical dead-end fractures.

  • PDF

Genesis of a Vertical City in Hong Kong

  • Lau, Stephen S.Y.;Zhang, Qianning
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • A vertical city with multifunctional land use turns out to be the most viable solution for an urban condition characterized by increasing density due to population expansion, topographical limitation of buildable land, economic development and the pursuit for collective sustainable living, such as in Hong Kong. This paper presents initial research results from a study on the chronological and typological evolution of tall buildings in the city, from the climate-responsive verandah typology to the mixed-use hyper-commercial podium and residential tower typologies that predominate today, to the ultimate formation of a vertical city. Case studies and surveys have focused on the development of this building typology throughout the decades since the 1920s, substantiating a discussion on the subjective and objective factors contributing to a genesis of the vertical city phenomenon in Hong Kong. The discussion will engage, under the notion of the vertical city, on how residents and visitors adapt to the growing density of the city, and how they accustom themselves to the changing urban morphology over time. Advantages such as high efficiency, spaces savings, time convenience, etc.; and disadvantages such as deficiency in livability, incompatibility of uses, environmental health deficiencies, etc.; serve as a reference for other cities in need of high-density planning due to population and economic growth.

Year-to-year Variability of the Vertical Temperature Structure in the Youngsan Estuary

  • Cho, Yang-Ki;Lee, Kyeong-Sig;Park, Kyung-Yang
    • Ocean and Polar Research
    • /
    • v.31 no.3
    • /
    • pp.239-246
    • /
    • 2009
  • Long-term observations were conducted between 1997 and 2002 to examine the variability of the vertical temperature structure in the Youngsan Estuary, southwest Korea, in summer. The observed hydrographic data revealed that the temperature minimum layer in the middle depth persisted through the entire summer of 2000 but was rarely observed in other years. The variability in the vertical structure might be affected by the air temperature during the previous winter and the density difference between the open sea and the estuary. In 2000, the air temperature in the previous winter was lowest and the horizontal density difference during summer was largest. The large horizontal density difference probably produced more active driving of warm water along the bottom, which would have intruded into the Youngsan Estuary. Furthermore, the cold previous winter would have provided a better condition for maintaining cold temperatures in the middle water layer for a longer period.

An analytical solution for the close-contact melting with vertical convection and solid-liquid density difference (종방향대류 및 고액밀도차가 고려된 접촉융해에 대한 해석해)

  • Yu, Ho-Seon;Hong, Hui-Gi;Kim, Chan-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.9
    • /
    • pp.1165-1173
    • /
    • 1997
  • The steady state close-contact melting phenomenon occurring between a phase change material and an isothermally heated flat plate with relative motion is investigated analytically, in which the effects of vertical convection in the liquid film and solid-liquid density difference are incorporated simultaneously. Not only the scale analysis is conducted to estimate a priori qualitative dependence of system variables on characteristic parameters, but also an analytical solution to a set of simplified model equations is obtained to specify the effects under consideration. These two results are consistent with each other, in that the vertical convection affects both the solid descending velocity and the film thickness, and that the density difference alters only the solid descending velocity. While the effect of vertical convection can be characterized conveniently by a newly introduced temperature gradient factor which asymptotically approaches the unity/zero with decreasing/increasing the Stefan number, that of density difference is represented by the liquid-to-solid density ratio. It is shown that the solid descending velocity depends linearly on the density ratio, and that the ratios of solid descending velocity, film thickness and friction coefficient to the conduction solution are proportional to 3/4, 1/4 and -1/4 powers of the temperature gradient factor, respectively. Also, established is the fact that the effect of convection can be legitimately neglected in the analysis for the range of the Stefan number less than 0.1.

Liquefaction Strength of Shelly Sand in Cyclic Simple Shear Test (반복단순전단 시험에 의한 패각질 모래의 액상화 강도)

  • Yoon, Yeowon;Yoon, Gillim;Choi, Jaekwon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.69-76
    • /
    • 2007
  • The sands which use for soil improvement of soft ground at coastal area contain more or less amount of shells. In this research the effects of shell contents on the liquefaction resistance of the shelly sand were studied. NGI cyclic simple shear tests were performed for the shell-sands with shell contents of 0%, 5%, 10%, 20%, 30% under the effective vertical stress of 50kPa, 100kPa and 150kPa for 40% and 55% of relative density, respectively. Cyclic simple shear test results showed that for the low effective vertical stress, the liquefaction resistance increased rapidly with increase of shell contents in both 40% and 55% relative density. On the other hand, for the high effective vertical stress, the liquefaction resistance increased slightly in 40% relative density and was almost same in 55% relative density. Liquefaction resistance decreased with increasing effective vertical stress for both 40% and 55% relative density. In the same effective vertical stress and shell contents, liquefaction resistance increased with the increase of relative density.

  • PDF

The Fabrication of Artificial Fine Aggregates Using Stone Sludge and Spent Bleaching Clay

  • Kim, Kangduk
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.492-497
    • /
    • 2014
  • Artificial fine aggregates (denoted AFA) were fabricated using spent bleaching clay (denoted SBC) generated from processed vegetable oil and stone sludge (denoted SS) produced from crushed aggregate manufacturing materials for use as functional construction materials. Each raw material was crushed to particle size finer than $150{\mu}m$, and fine spherical pellets of approximately 1 ~ 4 mm in diameter were prepared by a pelletizing process. The physical properties of the AFA were measured with different types of sintering equipment. A new type of vertical furnace that sinters fine aggregates in a fluidized bed at high temperatures was designed and tested. AFA sintered in a rotary kiln at $1125^{\circ}C$ showed a bulk density of $1.5g/cm^3$ and a water absorption of 16%. AFA sintered in the vertical furnace at $1125^{\circ}C$ showed a bulk density of $1.9g/cm^3$ and water absorption of 8.5%. The bulk density of the AFA sintered in the vertical furnace showed a bulk density 27% higher and water absorption 47% lower than those of AFA sintered in the rotary kiln.

Relationship between Cone Tip Resistance and Small-Strain Shear Modulus of Cemented Sand (고결모래의 콘선단저항과 미소변형전단탄성계수 관계)

  • Lee, Moon-Joo;Lee, Woo-Jin;Kim, Jae-Jeong;Choi, Young-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.331-340
    • /
    • 2009
  • This study evaluates the relationship between cone tip resistance ($q_c$) and small-strain shear modulus ($G_{max}$) of cemented sand. For this purpose, a series of miniature cone penetration and bender element tests are performed in calibration chamber specimens with various gypsum contents. Experimental results show that both $q_c$ and $G_{max}$ of sand increase with increasing cementation level as well as relative density and vertical confining stress. However, the relative density and vertical confining stress has more significant influence on $G_{max}$ and $q_c$ of uncemented sand than those of cemented sand. It is observed that the $G_{max}/q_c$ ratio of cemented sand decreases with increasing relative density. This result means that state variables have more affect on $q_c$ than $G_{max}$ of cemented sand. Test results also show that the effect of vertical stress on $G_{max}-q_c$ relation is reduced by cementation effect.

  • PDF

The temporal variability of the longitudinal plasma density structure in the low-latitude F -region

  • Oh, S.J.;Kil, H.;Kim, Y.H.
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.30.4-31
    • /
    • 2008
  • Formation of longitudinally wave-like plasma density structure in the low-latitude F region is now a well-known phenomenon from the extensive studies in recent years. Observations of plasma density from multiple satellites have shown that the locations of the crests of the plasma density that are seen to be stationary during daytime are shifted after sunset. This phenomenon has been understood to be caused by eastward drift of the ionosphere at night. However, the eastward drift velocity of the ionosphere after sunset is not sufficiently large enough to explain the day-night difference in the longitudinal density structure. The just after sunset and the nighttime ionospheric morphologymay be affected by this drift after sunset. In this study, we will investigate the temporal variation of the phase of the longitudinal density structure and vertical plasma drift by analyzing the ROCSAT-1, TIMED/GUVI, and DMSP data and verify the role of the vertical drift after sunset in the change of the phase of the longitudinal density structure.

  • PDF