• Title/Summary/Keyword: Vertical control

Search Result 1,657, Processing Time 0.027 seconds

A Study of Wave Control by New Type Floating Breakwater (신형식 부방파제의 파랑제어에 관한 연구)

  • 김도삼;이광호;최낙훈;윤희면
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • In this study, several new types of floating breakwater are proposed according to the geometry of the vertical barrier and the existence of horizontal plate, and are compared to the steel floating breakwater adopted in Won-Jun fishing port and the performance of wave control is numerically investigated by using Green function method. From the numerical results, model attached the horizontal barrier under the vertical barrier is more efficient for reflection and transmission coefficient than the steel floating breakwater in Won-Jun fishing port. It is confirmed that the transmitted waves can be controlled efficiently by optimizing the length and distance of a vertical and horizontal barriers.

Vertical isolation of a structure based on different states of seismic performance

  • Milanchian, Reza;Hosseini, Mahmood;Nekooei, Masoud
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.103-118
    • /
    • 2017
  • In vertical seismic isolation (VSI), a building is partitioned intentionally by vertical layers into two dynamically different substructures for seismic response reduction. Initially, a 1-story frame was partitioned into two substructures, interconnected by viscous and visco-elastic links, and seismic responses of the original and the vertically isolated structures (VIS) were obtained, considering a large number of stiffness and mass ratios of substructures with respect to the original structure. Color contour graphs were defined for presentation and investigation of large amounts of output results. Dynamic characteristics of the isolated structures were studied by considering the non-classical damping of the system, and then the effects of viscous and visco-elastic link parameters on the modal damping ratios were discussed. On this basis, three states of mass isolation, interactional state, and control mass were differentiated. Response history analyses were performed by Runge-Kutta numerical method. In these analyses, interaction of isolation ratios and link parameters, on response control of VIS was studied and the appropriate ranges for link parameters as well as the optimal ranges for isolation ratios were suggested. Results show that by using the VSI technique, seismic response reduction up to 50% in flexible substructure and even more in stiff substructure is achievable.

Underwater E-plane Attenuation Model of Omnidirectional Antenna Using Half Power Beam Width (HPBW) (반전력빔폭을 이용한 전방향성 안테나의 수중 환경 수직 평면 감쇠 모델)

  • Kwak, Kyungmin;Park, Daegil;Kim, Younghyeon;Chung, Wan Kyun;Kim, Jinhyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1050-1056
    • /
    • 2015
  • In this paper, we use the characteristics of electromagnetic waves underwater attenuation for estimating linear distance between a transmitting node and receiving node, and research underwater vertical plane attenuation model for constructing the underwater localization system. The underwater localization of 2 dimensional with the plane attenuation model in the horizontal plane (H-plane) was proposed previous research. But for the 3 dimensional underwater localization, the additional vertical plane (E-plane) model should be considered. Because the horizontal plane of omnidirectional antenna has the same attenuation tendency in x-y plane according to the distance, whereas in vertical plane shows an irregular pattern in x-z plane. For that reason, in the vertical plane environment, the attenuation should be changed by the position and inclination. Hence, in this paper the distance and angle between transmitting and receiving node are defined using spherical coordinate system and derive an antenna gain pattern using half power beam width (HPBW). The HPBW is called a term which defines antenna's performance between isotropic and other antennas. This paper derives omnidirectional antenna's maximum gain and attenuation pattern model and define vertical plane's gain pattern model using HPBW. Finally, experimental verifications for the proposed underwater vertical plane's attenuation model was executed.

Interference Management by Vertical Beam Control Combined with Coordinated Pilot Assignment and Power Allocation in 3D Massive MIMO Systems

  • Zhang, Guomei;Wang, Bing;Li, Guobing;Xiang, Fei;lv, Gangming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.2797-2820
    • /
    • 2015
  • In order to accommodate huge number of antennas in a limited antenna size, a large scale antenna array is expected to have a three dimensional (3D) array structure. By using the Active Antenna Systems (AAS), the weights of the antenna elements arranged vertically could be configured adaptively. Then, a degree of freedom (DOF) in the vertical plane is provided for system design. So the three-dimension MIMO (3D MIMO) could be realized to solve the actual implementation problem of the massive MIMO. However, in 3D massive MIMO systems, the pilot contamination problem studied in 2D massive MIMO systems and the inter-cell interference as well as inter-vertical sector interference in 3D MIMO systems with vertical sectorization exist simultaneously, when the number of antenna is not large enough. This paper investigates the interference management towards the above challenges in 3D massive MIMO systems. Here, vertical sectorization based on vertical beamforming is included in the concerned systems. Firstly, a cooperative joint vertical beams adjustment and pilot assignment scheme is developed to improve the channel estimation precision of the uplink with pilots being reused across the vertical sectors. Secondly, a downlink interference coordination scheme by jointly controlling weight vectors and power of vertical beams is proposed, where the estimated channel state information is used in the optimization modelling, and the performance loss induced by pilot contamination could be compensated in some degree. Simulation results show that the proposed joint optimization algorithm with controllable vertical beams' weight vectors outperforms the method combining downtilts adjustment and power allocation.

Design and Implementation of UAV's Autopilot Controller

  • Lee, Jeong-Hwan;Lee, Ki-Sung;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.52-56
    • /
    • 2004
  • Unmanned Aerial Vehicles (UAVs) are remotely piloted or self-piloted aircraft by inputted program in advance or artificial intelligence. In this study Aileron and Elevator are used to control the movement of airplane for horizontal and vertical flights about its longitudinal and lateral axis. In an introduction, the drone was linearly modeled by extracting aerodynamic parameter through flight test and simulation, lift and drag coefficient corresponding to angle of attack, changes of pitching moment coefficient. In the main subject, the flight simulation was performed after constructing hardware using TMS320F2812 from TI company and PID with lateral and longitudinal controller for horizontal and vertical flights. Flying characteristics of two system were estimated and compared through real flight test with hardware equipped algorithm and adaptive algorithm that was applied to consider external factors such as turbulence. In conclusion the control performance of the controller with proposed algorithm was streamlined at lateral and longitudinal controller respectively, we will discuss guidance command to pass way point.

  • PDF

Position Control of a Precise 6-D.O.F Stage with Magnetic Levitation (자기부상을 이용한 초정밀 6자유도 스테이지의 위치제어)

  • 이세한;강재관;김용주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.894-897
    • /
    • 2004
  • In this paper, we address a position control scheme for a stage system, which is levitated and driven by electric magnetic actuators. This consists of a levitating object (called platen) with 4 permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion by the vertical and horizontal forces. Dynamic equations of the stage system are derived based on Newton-Euler method and its special Jacobian matrix describing a relation between the Joint velocity and platen velocity is done. There are proposed two control schemes for positioning, which are Cartesian space controller and Joint space controller. The control performance of the Cartesian space controller is better than the Joint space controller in task space trajectory while the Joint space controller is simpler than the Cartesian space controller in controller realization.

  • PDF

Magnetic Levitation Control of the Horizontally-Movable Metal Ball (수평방향 이동이 가능한 금속구의 자기부상 제어)

  • Hamm, Gil;Rhee, Hui-Nam;Lee, Sang-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.438-439
    • /
    • 2011
  • Magnetic levitation control system of a metal ball was designed using combined PID and fuzzy logic, in which two electromagnets are used to control the vertical and horizontal position of the ball. Single synchronization coil sensor was used to detect the vertical position. Electric power is differentially supplied to two electromagnets so that the ball can move horizontally. In the experiment 25 cm diameter metal ball was levitated and successfully controlled to move horizontally.

  • PDF

Experimental Study on Vertical Reduction Effectiveness of Main Control Room of NPP using 3-Dimensional Isolation System (원전 주제어실 삼차원 면진시스템 수직방향 저감효과 시험연구)

  • Ham, Kyung-Won;Lee, Kyung-Jin;Suh, Yong-Pyo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.417-423
    • /
    • 2006
  • The seismic characteristics with 3-Dimensional isolation systems have been studied using a shaking table system. In this study, we made nuclear power plant main control room floor systems and several seismic shaking table tests with and without isolation systems were conducted to evaluate floor isolation effectiveness. Isolation systems have showed large reduction effectiveness in acceleration and response spectra with x and z direction respectively, but horizontal isolation is more effective than vertical one It is required to make isolation systems of which design frequency is below 1Hz when applied to main control room of NPP, but considering much difficulties in making such isolation systems, it is recommended that much consideration should be taken into account when applied to main control room of NPP.

  • PDF

Optimization of a four-bar mechanism cyclic pitch control for a vertical axis wind turbine

  • Montenegro-Montero, Mariana;Richmond-Navarro, Gustavo;Casanova-Treto, Pedro
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.121-130
    • /
    • 2022
  • In this paper, the issue of pitch control in a vertical axis wind turbine was tackled. Programming the Actuator Cylinder model in MATLAB, a theoretical optimum pitch solution was found and then a classic four-bar mechanism was adapted to that theoretical solution to achieve a simple and elegant control of the pitch in the turbine. A simulation using the mechanism worked to find the optimum pitch cycles, where it was found that the mechanism would, in fact, increase the efficiency of the VAWT, by at least 11% and in the best case, over 35%. Another aspect that is studied is the possibility of self-start of the turbine by only changing the pitch on the blades. This analysis, however, proved that a further individual pitch control must be used to surpass the cogging torque. All analyses conducted were done for a specific wind turbine that is 2 m2 in the swept area.

A Study on the Modeling and Control of a Flexible One-Link Manipulator Moving in a Vertical Plane (수직면에서 회전운동 하는 단일 탄성링크를 가지는 매니퓰레이터의 모델링과 제어에 관한 연구)

  • Kim, Jongdae;Oh, Seokhyung;Kim, Kiho;Oh, Chaeyoun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.132-142
    • /
    • 1996
  • This paper presents a technique to model and control a manipulator which has a flexible link and moves in a vertical plane. The flexible link is modeled as an Euler-Bernoulli Beam. Elastic deformation of the flexible link is represented using the assumed modes method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. This paper presents a simple technique to improve the correctness of the developed model. The final model including the shortening effect due to elastic deformation correlates very well with experimental results. The free body motion simulation shows that two assumed modes for the representation of the elastic deformation is proper in terms of the model size and correctness. A control algorithm is developed using PID control technique. The proportional, integral and derivative control gains are determined based on dominant pole placement method with a rigid one-link manipulator. A position control simulation shows that the control algorithm can be used to control the position and residual oscillation of the flexible one-link manipulator effectively.

  • PDF