• Title/Summary/Keyword: Vertical consistency

Search Result 58, Processing Time 0.02 seconds

Evaluation of the Impact Force on the Vertically Placed Force Platform (지면반력 측정기 수직 설치 시 충격력 검증)

  • Choi, Chi-Sun;Shin, In-Sik;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.2
    • /
    • pp.57-68
    • /
    • 2004
  • This study was to evaluate the consistency of the vertical force($F_z$) of the force platform and the impact force. Two experiments were performed. First, the force platform was vertically placed to hang to the wall. While the rotating iron body hit the force platform, $F_z$ was measured. Then $F_z$ was compared with the impact force of the rotating iron body that was precalculated by using the inertia moments and the rotating force. Second, six Taekwondo masters punched the force platform to show what a certain pattern the impart force has. They were asked to punch the target depending on target distances. The target distances were differed from the relative arm segment of subjects as 90%, 80%, 70%, 60%, and 50% (100% target distance equals the aim length of each subject). Pearson's correlations were used between $F_z$ and the impact force. Also the linear regression was also performed to show the linearity. At the first experiment, $F_z$ and the impact force had much correlations and showed linear characteristics. Therefore, $F_z$ could be regarded as the impact force. At the second experiment, the strongest impact force was measured at the target distance of 80% and the time taken to the maximum impact force was within 0.02 seconds. The result of this study recommends that it can help the comparative study between the impact forces and other hitting sports.

An Empirical Study on the Fitness between Manufacturing Technology Strategy and product Structure - Based on Korean Electric and Electronic Industry - (제품구조와 생산기술간의 적합성에 관한 실증적 연구 - 우리나라 전기 . 전자산업을 중심으로 -)

  • 이경환;임재화
    • Proceedings of the Technology Innovation Conference
    • /
    • 1992.12a
    • /
    • pp.119-155
    • /
    • 1992
  • Traditionally, the target of manufaturing technology strategy was derived in a efficiency, cost and productivity. So most activities of the manufacturing brought focus into the engineering technology, equipments and research and improvement of new products to maximize the efficiency. As a resell of this legacy, most of the activities of manufacturing has been executed on the method of quality improvement, development of new equipment to incense the efficiency and the research of materials for new products. Those trends, however overlook the operation management activities which is very important as a assets in competitive strategy. But the market enviornment of morden manufacturing companies faced to the uncertainty and complexity. So they need capability of competition which requires new concept of manufacturing technology strategy to grasp the competitive advantages. In this point of view, this paper deal with the empirical study in korean manufacturing technology strategy of the electic and electronic industry. For the empirical study, check list was made to survey the 98 manufacturing companies. The analysis procedures are as below. First, identify the manufacturing technology group an product structure group by each variable. Second manufacturing technology variables are segmented into product technology and vertical integration, suborder and infrastructure, to analyse the decision making pattern which derive the strategy groups. Third, by the fitness analysis between product structure group and manufacturing technology group, the economic results of a growth rate of sale and a profit rate of sale are tested. In this approach, fitness analysis between product structure group and manufacturing technology group show, as a whole, the no significant values in economic results of the company. But investigating the statistical values shows the trend that econmic result of the complany is somewhat higher when the degree of fitness of manufacturing technology strategy by product structure has high value. Concluding the remarks, the competitive advantages of company lies not in the efficiency of manufacturing systems but in the way of the structure and decision making pattern of the manufacturing system. And the cons i stoney between strategy target and manufacturing technology strategy, and the consistency of manufacturing technology strategy and product structure are the term of competitive advantages.

  • PDF

Potential Use of a Smartphone to Evaluate Gait during Walking in Stroke Patients (스마트폰 어플리케이션을 이용한 뇌졸중 환자의 보행 평가 가능성)

  • An, Bo-Ra;Ki, Kyong-Il;Woo, Young-Keun
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.67-73
    • /
    • 2018
  • Purpose: Smartphones, which are widely used worldwide to detect acceleration and position, have been used in the area of rehabilitation medicine in recent clinical research studies and tests. The aim of the present study was to determine the feasibility of using a smartphone application based on center of movement (COM) displacement to measure gait parameters in stroke patients in the clinical field of rehabilitation medicine. Methods: The study consisted of 30 stroke patients. The COM was measured using a smartphone application, Gait Analysis Pro, during a 6-m walk. Each patient performed three 6-m walking trials, and the smartphone application measured gait duration, gait speed, step length, cadence, and vertical and lateral displacement of the COM. The Kolmogorov-Smirnov test was conducted to determine the normality in gait parameters, and a repeated one-way analysis of variance (ANOVA) was performed to determine the consistency among the three trials. A p value of 0.05 was considered statistically significant in all the tests. Results: In all the measured parameters, the smartphone application showed a normal distribution, as shown by the results of the Kolmogorov-Smirnov test. There were no significant differences among the three repetitive walking trials. Conclusion: These results suggest that the smartphone application can be used for evaluating gait in stroke patients, as well as in healthy adults. However, prior to using the smartphone application in the clinical field, further research involving three-dimensional gait analysis is needed to enhance the confidence level of the findings.

Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data (SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증)

  • Lee, Eun-Hee;Choi, In-Jin;Kim, Ki-Byung;Kang, Jeon-Ho;Lee, Juwon;Lee, Eunjeong;Seol, Kyung-Hee
    • Atmosphere
    • /
    • v.27 no.2
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

Development and Verification of Indicators for a Foodservice & Nutrition Management Evaluation at a Hospital Nutrition Department (병원 영양부서의 급식 및 영양관리 평가 지표 개발 및 검증)

  • Lee, Joo-Eun;Kwak, Tong-Kung
    • Journal of the Korean Dietetic Association
    • /
    • v.15 no.4
    • /
    • pp.364-382
    • /
    • 2009
  • The purposes of this study were to develop the standard indicators to evaluate the food and nutrition systems in hospitals and to test the validity of those items scientifically. The results were as follows: First, the conceptual validity was examined with recognition degrees of importance from the hospital nutrition department managers. All of the hospital nutrition department's operation evaluation standards and the indicators' conceptual validity tested were in the range of 3.71~4.93 out of 5.0, and the mean score was 4.36. Therefore, the conceptual validity was verified. Second, to verify the factor validity of the items of the standards and indicators for the hospital nutrition department's operation evaluation, the standards and indicators were analyzed as key-factors. Key-factor analysis after vertical rotation showed that four factors appeared and were composed of (a) facilities management, (b) sanitation management, (c) operation & foodservice management, and (d) nutrition management. Third, the reliability of the standards and indicators for the hospital nutrition department's operation evaluation was analyzed and resulted in a score of 0.98, which showed good internal consistency. Fourth, the discriminative power of each item of the standards for the hospital nutrition department's operation evaluation was tested by checking the differences between groups with first quartile and forth quartile of total evaluation scores. The indicators having low distinction power were modified into obligatory items or eliminated for better differentiation.

  • PDF

A Study on the Optimum Mix Proportion of the Mass Concrete Designed as Massive and Deep Structure

  • Kwon Yeong-Ho;Lee Hwa-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.293-302
    • /
    • 2005
  • This study describes data from determination of the optimum mix proportion and site application of the mass concrete placed in bottom slab and side wall having a large depth and section as main structures of LNG in-ground tank. This concrete requires low heat hydration, excellent balance between workability and consistency because concreting work of LNG in-ground tank is usually classified by under-pumping, adaptation of longer vertical and horizontal pumping line than ordinary pumping condition. For this purpose, low heat Portland cement and lime stone powder as cementitious materials are selected and design factors including unit cement and water content, water-binder ratio, fine aggregate ratio and adiabatic temperature rising are tested in the laboratory and batch plant. As experimental results, the optimum unit cement and water content are selected under $270kg/m^3$ and $l55{\~}l60 kg/m^3$ separately to control adiabatic temperature rising below $30^{\circ}C$ and to improve properties of the fresh and hardened concrete. Also, considering test results of the confined water ratio($\beta$p) and deformable coefficient(Ep), $30\%$ of lime stone powder by cement weight is selected as the optimum replacement ratio. After mix proportions of 5cases are tested and compared the adiabatic temperature rising($Q^{\infty}$, r), tensile and compressive strength, modulus of elasticity, teases satisfied with the required performances are chosen as the optimum mix design proportions of the side wall and bottom slab concrete. $Q^{\infty}$ and r are proved smaller than those of another project. Before application in the site, properties of the fresh concrete and actual mixing time by its ampere load are checked in the batch plant. Based on the results of this study, the optimum mix proportions of the massive concrete are applied successfully to the bottom slab and side wall in LNG in-ground tank.

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

Dynamic Analysis of a KAERI Channel Type Shear Wall: System Identification, FE Model Updating and Time-History Responses (KAERI 채널형 전단벽체의 동적해석; 시스템판별, FE 모델향상 및 시간이력 응답)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.145-152
    • /
    • 2021
  • KAERI has planned to carry out a series of dynamic tests using a shaking table and time-history analyses for a channel-type concrete shear wall to investigate its seismic performance because of the recently frequent occurrence of earthquakes in the south-eastern parts of Korea. The overall size of a test specimen is b×l×h =2500 mm×3500 mm×4500 mm, and it consists of three stories having slabs and walls with thicknesses of 140 mm and 150 mm, respectively. The system identification, FE model updating, and time-history analysis results for a test shear wall are presented herein. By applying the advanced system identification, so-called pLSCF, the improved modal parameters are extracted in the lower modes. Using three FE in-house packages, such as FEMtools, Ruaumoko, and VecTor4, the eigenanalyses are made for an initial FE model, resulting in consistency in eigenvalues. However, they exhibit relatively stiffer behavior, as much as 30 to 50% compared with those extracted from the test in the 1st and 2nd modes. The FE model updating is carried out to consider the 6-dofs spring stiffnesses at the wall base as major parameters by adopting a Bayesian type automatic updating algorithm to minimize the residuals in modal parameters. The updating results indicate that the highest sensitivity is apparent in the vertical translational springs at few locations ranging from 300 to 500% in variation. However, their changes seem to have no physical meaning because of the numerical values. Finally, using the updated FE model, the time-history responses are predicted by Ruaumoko at each floor where accelerometers are located. The accelerograms between test and analysis show an acceptable match in terms of maximum and minimum values. However, the magnitudes and patterns of floor response spectra seem somewhat different because of the slightly different input accelerograms and damping ratios involved.

Development and Research of SMT(Smart Monitor Target) Game Interface for Airsoft Gun Users (AirSoft Gun 사용자를 위한 SMT(Smart Monitor Target)게임 인터페이스 개발 연구)

  • Chung, Ju Youn;Kang, Yun Geuk
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.1
    • /
    • pp.83-93
    • /
    • 2021
  • The purpose of this study was to develop a personalized SMT (smart monitor target) game interface for game users who enjoy airsoft sports as individual purchases of SMT have increased since the advent of the untouched era. For this study, the UX (user experience) of the game interface was designed based on previous research. In particular, the personalized game service was reinforced by adding the CP (command post) of the SMT system that performs the home function of the console game, which was intended to help the user maintain immersed in the game in the personalized space of the SMT. Major design elements for the SMT game interface included layout, color, graphics, buttons, and text, and the interface design was proceeded based on them. After composing a grid with a layout in which the tab function was applied to the interface with a vertical three-segment structure and the outer margin value secured, the military camouflage pattern and texture were applied to the colored tone to perform graphics work. Targets and thumbnails were produced as illustrations using experts to ensure the consistency of the interface, and then function buttons and texts on each page were used concisely for intuitive information delivery. The design sources organized in this way were developed using the Unity engine. In the future, we hope that game user-centered personalized interfaces will continue to develop and provide differentiated services unique to SMT systems in the airsoft gun market.

Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions

  • Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.217-232
    • /
    • 2023
  • Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.