• Title/Summary/Keyword: Vertical Pump

Search Result 195, Processing Time 0.028 seconds

Photo-pumped $1.3\;{\mu}m$ vertical-cavity surface-emitting lasers (광펌핑하여 $1.3\;{\mu}m$파장에서 동작하는 수직공진 표면광 레이저)

  • 송현우;김창규;이용희
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 1997
  • Vertical-cavity surface-emitting laser(VCSEL)s operating at 1.3-micron wavelength for optical communication are fabricated by using Si/SiO$_2$dielectric quater-wave pairs on both sides of the InGaAsP(${\lambda}_g$=1.3 ${\mu}{\textrm}{m}$) gain material. VCSELs are optically pumped with a Nd-YAG laser in a pulsed mode and lasing around 1.3 microns is observed. Lasing characteristics such as threshold pump intensity as a function of mirror-reflectivity, polarization, and threshold pump density with pump spot size are investigated.

  • PDF

Performance Simulation of Ground-Coupled Heat Pump(GCHP) System for a Detached House (단독주택 적용 지열 히트펌프 시스템의 성능 분석)

  • Sohn, Byong-Hu;Choi, Jong-Min;Choi, Hang-Seok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.392-399
    • /
    • 2011
  • Ground-coupled heat pump(GCHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some work related to performance evaluation of GCHP systems for commercial buildings has been done, relatively little has been reported on the residential applications. The aim of this study is to evaluate the cooling and heating performances of a vertical GCHP system applied to an artificial detached house($117\;m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, borehole diameter, and ground thermal properties, etc. The cooling and heating performance simulation of the system was conducted with different prediction times of 8760 hours and 240 months. The performance characteristics including seasonal system COP, average annual power consumption, and temperature variations related to ground heat exchanger were calculated and compared.

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 히트펌프 시스템의 열성능 해석)

  • Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong;Koh, Deuk-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.95-101
    • /
    • 2006
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHF) system. The calculation was performed for two design factors: the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model of water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

Study on COP Variations with the duration of Ground Source Heat Pump Systems Operation (지열히트펌프의 작동시간 경과에 따른 COP 변화에 대한 연구)

  • Lee, Yonggyu;Baek, Namchoon;Yoon, Eungsang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • In this study, the COP variation with the duration of Ground Source Heat Pump (GSHP) systems operation was analyzed by experiment. This experimental facility was installed in residential house as a back-up device of solar thermal heating system. The capacity of heat pump is 2.5 kW with a vertical bore hole of 150m depth. The COP of GSHP is varied, depending on the ground temperature which is used as a heat source. The ground heat source temperature influencing heating COP is the soil or rock temperature which adjoin with geo-source heat exchanger. This temperature is decreased rapidly according to the operation duration of heat pump. As a result, COP of GSHP is decreased to 3 in one hour of continuous operation time.

  • PDF

Analysis of Thermal Performance of Ground-Source Heat Pump System (지열 이용 열펌프 시스템의 열성능 해석)

  • Koh, Deuk-Yong;Shin, U-Cheul;Baek, Nam-Choon;Kim, Ook-Joong
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.167-172
    • /
    • 2005
  • The purpose of this study is to present the simulation results and an overview of the performance assessment of the Ground-Source Heat Pump(GSHP) system. The calculation was performed for two design factors. the spacing between boreholes and the depth of the vertical ground heat exchangers. And the simulation was carried out using the thermal simulation code TRNSYS with new model o( water to water heat pump developed by this study. As a result, it was anticipated that the yearly mean COPs of heat pump for heating and cooling are about 3.7 and 5.8 respectively and the heat pump can supply 100% of heating and cooling load all the year around.

  • PDF

Design of Stiffeners for Reducing Resonant Vibration of Large Vertical Pumps and Its Performance Verification (대형 입형펌프 운전 중 공진현상의 진동 저감을 위한 스티프너 설계 및 성능 검증)

  • Ryu, Kil-Su;Bong, Suk-Keun;Han, Seung-Woo;Roh, Cheol-Woo;Lee, Dong-Min;Lee, Jung-Woo;Park, Junhong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.65-72
    • /
    • 2013
  • This case study presents a practical method to reduce resonant vibration of large vertical pumps. The pumps are driven at 400 rpm rated speed by induction motor. The vibration was not significantly large when operated at this rated speed. Large vibration was occurred when the pump was operated below the rated speed for flow control. Due to the large vibration resonance, variable speed operation of the pump was not possible for several months at worst cases. To find an efficient vibration control method, the flexural responses of pumps for both normal and transient operations were measured. The measured modal characteristics were compared with those of finite element analysis. When the pump was operated at a specific rpm, the natural mode whose resonance frequency is twice the rotating angular speed induced the large vibration. The retrofit utilizing stiffeners to reduce this resonant vibration were performed. Effects of designed stiffeners on reducing vibration were validated through tests after actual installation.

A study on the Flow Characteristics of a Vortex originated in the Free Surface within a Sump in a Pump Station by PIV (PIV에 의한 펌프장 흡입수조의 자유표면에서 발생하는 와의 운동특성에 관한 연구)

  • Choi, J. W.;Kim, B. S.;Lee, H.;Kim, Y. T.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.95-101
    • /
    • 2002
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a sin91e pump operating in a semi-infinite pool with no nearby walls or floors and no stray currents. Hence, flow into the pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. But various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found within a sump of pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface due to different clearances from back-wall to vertical intake pipe with bell mouse and without. Moreover, the locations and vorticities of the various types of vortices that were found in the examinations are discussed.

  • PDF

A PIV Measurement on Flow Characteristics of Intakes within a Sump in a Pump Station (펌프장의 흡입수조내 흡입관의 유동특성에 관한 PIV 측정)

  • Lee, Yeong-Ho;Kim, Yu-Taek;Kim, Jeong-Hwan;Choe, Jong-Ung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.209-215
    • /
    • 2001
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite pool with no nearby walls or floors and no stray currents, Hence, flow into the Pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. But various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found in pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface, side-wall and back-wall due to different clearances from back-wall to vertical in take pipe. Moreover, the locations and vorticities of the various types of vortices that were found in the examinations are discussed.

  • PDF

Critical Speed Analysis of a Vertical Pump (펌프회전체의 임계속도해석)

  • 전오성;김정태;임병덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1992
  • A critical speed analysis of a pump shaft has been investigated. Among various methods in the shaft critical speed calculation, a transfer matrix method has been examined in this research. After a brief review on the transfer matrix method, a modeling procedure for a continuous structure has been discussed. Then, a critical speed of a multistage pump shaft has been estimated up to several low modes. Throughout an analysis, parametric effects on the bearing stiffness, a degree of the modeling order, and attachmant of the impeller have been investigated. As an application example, a critical speed analysis of a verical pump which has been implemented in domestic electric power plants for cooling water circulation has been conducted in order to provide a safe operation as far as a pump vibration is concerned.

  • PDF

Study on Flow Characteristics around Intakes within a Sump by PIV (PIV에 의한 흡입수조내 흡입관 주위의 유동특성에 관한 연구)

  • Choi, J.W.;Kim, J.H.;Nam, Cheong-Do;Kim, Y.T.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.563-569
    • /
    • 2001
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite pool with no nearby walls or floors and no stray currents, Hence, flow into the pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. But various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found in pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface, side-wall and back-wall due to different clearances from back-wall to vertical in take pipe. Moreover, the locations and vorticities of the various types of vortices that were found in the examinations are discussed.

  • PDF