• Title/Summary/Keyword: Vertical Launcher

Search Result 11, Processing Time 0.02 seconds

Study on the Disturbance Applied to Launcher Hatch by Ship Motions (함정운동에 의해 발사대 해치에 작용하는 외란에 관한 연구)

  • Byun, Young-Chul;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1111-1118
    • /
    • 2013
  • In this paper, the disturbance applied to launcher hatch by ship motions is introduced to identify the vertical ship motion disturbance. Basically, ship motions are comprised of 6 degrees of freedom: roll, pitch, yaw, heave, surge and sway. In the case of the shipboard launcher hatch the coupled pitch, heave and roll are significant motions to be transformed to a vertical direction motion. The maximum acceleration values are obtained from the vertical motion model and the ship motion data in accordance with ship type and hatch location on the ship. We verify that the maximum pitch motion mainly influences the launcher hatch and also present the quantity of the maximum load disturbance by the ship's motion acceleration.

SDINS Transfer Alignment using Adaptive Filter for Vertical Launcher (적응필터를 사용한 수직상태 SDINS 전달정렬)

  • Park, Chan-Ju;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.14-21
    • /
    • 2007
  • This paper proposes SDINS(strapdown inertial navigation system) transfer alignment method for vertical launcher using an adaptive filter in the ship. First, the velocity and attitude matching transfer alignment method is designed to align SDINS for vertical launcher. Second, the adaptive filter is employed to estimate measurement noise variance in real time using the residual of measurements. Because it is difficult to decide measurement noise variance when noise properties of the ship SDINS are changed. To verify its performance, it is compared with the EKF(Extended Kalman filter) using uncorrect measurement variance. The monte carlo simulation results show that proposed method is more effective in estimating attitude angle than EKF.

Study for surface wave launcher of dielectric coated coaxial cable using FDTD method (FDTD 방법을 이용한 유전체를 입힌 동축 케이블의 표면파 로운처에 관한 연구)

  • 정진우;이창원김중표손현
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • The surface wave launcher from the dielectric coated coaxial cable to dielectric slab is investigated. FDTD method using local subcell and contour-path model is applied to determine the fine geometrical features. The reflection coefficient in coaxial cable region is found using extract algorithm. In this paper, two structures are presented as coaxial slot surface wave launcher. One structure has a vertical launching angle, and the other has an arbitrary launching angle. The numerical results show that a certain launching angle is minimized the reflection coefficient.

  • PDF

Prediction of Supersonic Jet Impingement on Flat Plate and Its Application (초음속 충돌제트에 대한 수치적 연구와 응용)

  • Lee K. S.;Hong S. K.;Park S. O.;Bae Y. S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.225-228
    • /
    • 2002
  • Supersonic jet impingement on a flat plate has been investigated to show the flow physics for different jet heights and to demonstrate the adequacy of the characteristics-based flux-difference Wavier-Stokes code Current study also compares the steady-state solutions obtained with variable CFL number for different grid spacing with the time-accurate unsteady solutions using the inner iterations, displaying a good agreement between the two sets of numerical solutions. The unsteady nature of wall fluctuations due to bouncing of the plate shock is also uncovered for high pressure ratios. The methodology is then applied to a complex vertical launcher system where the jet plume hits the bottom wail, deflects into the plenum and eventually exits through the vertical uptake. Flow structures within vertical launcher system are captured and solutions are partially verified against the flight test data. Present jet impingement study thus shows the usefulness of CFD in designing a complex structure and predicting flow behavior within such a system.

  • PDF

Engineering Applications of Jet Impingement Associated with Vertical Launching System Design

  • Hong, Seung-Kyu;Lee, Kwang-Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.67-75
    • /
    • 2002
  • In the course of missile system design, jet plume impingement is encountered in designing airframe as well as launchers, requiring careful investigation of its effect on the system. In the present paper, recent works on such topic are presented to demonstrate usefulness of CFD results in helping design the hardware. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. The main parameters are the ratio of the jet pressure to the ambient pressure and the distance between the nozzle and the wall. In the current application, the nozzle contour and the pressure ratio are held fixed, but the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. The same methodology is then applied to a complex vertical launcher system (VLS), capturing its flow structure and major design parameter. These applications involving jets are thus hoped to demonstrate the usefulness and value of CFD in designing a complex structure in the real engineering environment.

Determination of Cyclogram for Liquid-Propellant Rocket Engine

  • Ha, Seong-Up;Kwon, Oh-Sung;Lee, Jung-Ho;Kim, Byoung-Hun;Kang, Sun-Il;Han, Sang-Yeop;Cho, In-Hyun;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.59-66
    • /
    • 2002
  • A vertical test stand based on launcher propulsion system was constructed and several tests for the determination of cyclogram were carried out. To make an accurate estimation, static and dynamic pressures were measured and analyzed. Especially, static pressure measurements using fast response sensors without extension tubes were used to determine operation sequence more evidently. The standard operation times of final valves were determined in cold flow tests with an engine head, and fire formation time in combustion chamber was checked in an ignition test with an ignitor only. On the basis of these tests, ignition sequence was established and combustion test cyclogram was finally determined. According to combustion test, test results were well matched with the determined cyclogram within 0.05 sec.

Analysis of Liquid-Propellant Rocket Engine(KL-3) Unstable Combustion Characteristics of Vertical Installation (수직장착에서의 액체추진제 로켓엔진(KL-3) 불안정 연소특성에 관한 연구)

  • 하성업;권오성;이정호;김병훈;한상엽;김영목
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.18-27
    • /
    • 2003
  • To perform combined tests with propellant feeding system and engine, which were developed for KSR-III launcher, vertical test stand was organized and a series of hot-fire combustion tests were carried out with engines of several injector faceplate types. In hot-fire tests in vertical installation, combustion instabilities occurred right after ignition with an engine without baffle, and such combustion instabilities did not occur at ignition add during mainstage operation for an engine with STS or composite baffle. 1.regular and temporary pressure pulsations(popping) were detected during steady operation with a baffle engine, however a development to combustion instabilities with resonant mode was highly suppressed by baffle. With a series of tests, it was confirmed that the last developed engine, which has composite baffle, was operated successfully in KSR-III flight propulsion system.

Transfer Alignment with Adaptive Filter Estimating Time Delay (시간지연 추정 적응필터 적용 전달정렬 기법)

  • Park, Chan-Ju;Yu, Myeong-Jong;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1079-1086
    • /
    • 2008
  • During transfer alignment navigation information transferred MINS(master inertial navigation system) to SINS(slave inertial navigation system) has a changed time delay. The changed time delay degrades the performance of transfer alignment. This paper proposes an adaptive filter that estimates covariance of a time delay in real-time using residual of measurements. The performance of the adaptive filter is compared with that of the EKF(extended Kalman filter) in case of transfer alignment for vertical launcher in the ship. The results show that proposed method is more effective than EKF in estimating attitude errors.

Design and Application of Emergency Blockage System for Engine Part at IPPT and SQT (IPPT, SQT에서의 엔진부 비상정지 시스템 설계 및 운용)

  • 하성업;이중엽;정태규;한상엽
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.44-53
    • /
    • 2003
  • A vertical hot-firing test facility was established to carry out the IPPT(Integrated Propulsion Performance Test) and SQT(Stage Qualification Test) of KSR-III(Korea Sounding Rocket-III). The components for actual launcher were mostly used, hence these tests were carried out under the condition of relatively lower safety margin. To perform hot-firing tests with the maximum safety, an engine emergency blockage system was investigated and applied. An emergency blockage system using combustion chamber pressures and acceleration signals was set up to monitor ignition delay and fail, flame out, propellant feeding status, unstable combustion and excessive structural vibration. With such a system, the test safety could be secured by rapid judgement and follow-up measures, which made IPPT and SQT be safely completed.

Error Model Analysis and Performance Evaluation for the Rapid Alignment Technique of Projectile Navigation System in Inclined Launch Systems (경사 고각 발사 시스템에서의 발사체 항법장치 급속 초기정렬기법에 대한 오차모델 분석 및 성능평가)

  • Park, Sebeen
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.195-204
    • /
    • 2022
  • In this paper, we described the rapid initial alignment techniques of projectile navigation system for use in inclined launch systems. One-shot alignment technique, one of the rapid initial alignment techniques, is possible to align a navigation system within seconds because it uses external information from an launcher navigation system. However, since it has only been used in vertical launch systems, its performance in inclined launch systems has not been verified. Therefore, this paper analyzed the error elements that occur when the one-shot alignment technique is applied to the inclined launch system, and introduced a method to improve the alignment performance by minimizing those errors. Additionally, By simulating and testing the performance of the proposed alignment technique, it was verified that it is effective even in an environment where a real navigation system is used.