• Title/Summary/Keyword: Vertical Jump Strategy

Search Result 5, Processing Time 0.018 seconds

Analysis of the Vertical GRF Variables during Landing from Vertical Jump Blocking in Volleyball (배구 제자리 점프 블로킹 착지 시 숙련도에 따른 수직지면반력 변인 분석)

  • Youm, Chang-Hong;Park, Young-Hoon;Seo, Kook-Woong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.57-64
    • /
    • 2007
  • The purpose of this study was to investigate comparative analysis of the vertical ground reaction force variables during landing from vertical jump blocking in volleyball through GRF analysis system. The subjects participated in this study were 6 male university volleyball player and 6 male acted as a control group. The results are as follows: 1. The skilled group was longer than the unskilled group in flight time during vertical jump blocking. 2. The skilled group was faster than the unskilled group in tFz2 during landing from vertical jump blocking. 3. The skilled group was higher than the unskilled group in Fz2 during landing from vertical jump blocking. 4. The skilled group was higher than the unskilled group in Fz2LR during landing from vertical jump blocking. 5. The skilled group was higher than the unskilled group in impulse during landing from vertical jump blocking. Consequently, during landing from vertical jump, the landing strategy of the skilled group was found as a form of a stiff landing. Therefore, this landing strategy will be required to strengthen of hip and knee extensors and ankle plantar flexors for injury prevention.

Change in Countermovement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics (반동을 이용한 수직 점프 시 높이 변화에 따른 운동역학 및 상변화 시점에서의 지면반력 벡터 변화)

  • Kim, Seyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.277-283
    • /
    • 2017
  • In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the countermovement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the countermovement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the countermovement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

Countermovement Jump Strategy Changes with Arm Swing to Modulate Vertical Force Advantage

  • Kim, Seyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • Objective: We obtained force-displacement curves for countermovement jumps of multiple heights and examined the effect of an arm swing on changes in vertical jumping strategy. Countermovement jumps with hands on hips (Condition 1) and with an arm swing (Condition 2) were evaluated to investigate the mechanical effect of the arm movement on standing vertical jumps. We hypothesized that the ground reaction force (GRF) and/or center of mass (CoM) motion resulting from the countermovement action would significantly change depending on the use of an arm swing. Method: Eight healthy young subjects jumped straight up to five different levels ranging from approximately 10% (~25 cm) to 35% (~55 cm) of their body heights. Each subject performed five sets of jumps to five randomly ordered vertical elevations in each condition. For comparison of the two jumping strategies, the characteristics of the boundary point on the force-displacement curve, corresponding to the vertical GRF and the CoM displacement at the end of the countermovement action, were investigated to understand the role of arm movement. Results: Based on the comparison between the two conditions (with and without an arm swing), the subjects were grouped into type A and type B depending on the change observed in the boundary point across the five different jump heights. For both types (type A and type B) of vertical jumps, the initial vertical force at the start of push-off significantly changed when the subjects employed arm movement. Conclusion: The findings may imply that the jumping strategy does change with the inclusion of an arm swing, predominantly to modulate the vertical force advantage (i.e., the difference between the vertical force at the start of push-off and the body weight).

The Effects of Restricted Trunk Motion on the Performance of Maximum Vertical Jump (몸통 운동의 제약이 최대 수직점프의 수행에 미치는 영향)

  • Kim, Yong-Woon;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.27-36
    • /
    • 2009
  • The purpose of this study was to identify effects of restricted trunk motion on the performances of the maximum vertical jump. Ten healthy males performed normal countermovement jump(NJ) and control type of countermovement jump(CJ), in which subjects were required to restrict trunk motion as much as possible. The results showed 10% decreases of jumping height in CJ compared with NJ, which is primarily due to vertical velocity at take off. NJ with trunk motion produced significantly higher GRF than RJ, especially at the early part of propulsive phase, which resulted from increased moments on hip joint. And these were considered the main factors of performance enhancement in NJ. There were no significant differences in the mechanical outputs on knee and ankle joint between NJ and RJ. With trunk motion restricted, knee joint alternatively played a main role for propulsion, which is contrary on the normal jump that hip joint was highest contributor. And restricted trunk motion resulted in the changes of coordination pattern, knee-hip extension timing compared with normal proximal-distal sequence. In conclusion these results suggest that trunk motion is effective strategy for increasing performance of vertical jumping.

The Effects of Image Training and Vibration on Performance of Vertical Jumping (상상 훈련과 진동 운동의 적용이 수직점프의 수행력에 미치는 영향)

  • Bang, Hyun-Soo;Jung, Byeong-Ok;Kim, Jin-Sang
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.4 no.1
    • /
    • pp.49-56
    • /
    • 2009
  • Purpose : The Purpose of this study was to investigate the effects of image training and vibration on performance of vertical jumping. Methods : Subjects was classified into two groups, which were image training group(n=20) and vibration application group(n=20). The standard methods of each intervention were image training with listening recorded indication for 5 minute and vibration with speed of $1200{\pm}200\;rpm$. Muscle strength was measured using vertical jump performance. Results : The vertical jump performance was significantly increased after image training and vibration application(p<.05), however, it was more significantly after image training(p<.05). Conclusion : This study showed that image training and vibration application were effective treatment strategy on increase of muscle strength. Therefore, it could be considered as a treatment method in the patients with musculoskeletal disease including fracture, chronic degenerative disease and disuse atrophy.

  • PDF