DOI QR코드

DOI QR Code

Change in Countermovement Jump Strategy by Varying Jump Height Based on Simplified Framework for Center of Mass Mechanics

반동을 이용한 수직 점프 시 높이 변화에 따른 운동역학 및 상변화 시점에서의 지면반력 벡터 변화

  • Kim, Seyoung (Dept. of Robotics and Mechatronics, Korea Institute of Machinery & Materials(KIMM))
  • 김세영 (한국기계연구원 로봇메카트로닉스연구실)
  • Received : 2016.11.10
  • Accepted : 2017.01.04
  • Published : 2017.04.01

Abstract

In this study, we investigated how a jumping strategy changes with an increase in the vertical jump height for a resultant ground reaction force (GRF) vector. We expected that the resultant force vector between two sequential motion phases (i.e., countermovement and push-off) of the countermovement jump would significantly change with the vertical jump height to take advantage of the resulting supportive force (i.e., an initial push-off force larger than the body weight) through the countermovement phase. Nine healthy young subjects were instructed to jump straight up to five different height levels ranging from 191 cm to 221 cm, and the kinematic and kinetic data were obtained in regular trials. The results showed that a lower center of mass position and larger resultant force vector were clearly observed in a higher jump, implying that the countermovement strategy changed with the vertical jump height to prepare for sufficient joint deviation and obtain a force advantage for larger push-off work.

본 연구에서는 높이에 따른 점프 전략 변화를 이해하기 위해 반동을 이용한 수직 점프 시 상변화 시점에서의 지면반력 벡터가 높이에 따라 어떻게 변하는지 분석하였다; 반동과 추진 구간에서 유사한 힘 작용선을 갖는 수직 점프의 경우, 상변화 시점에서 반동의 이득을 나타내는 합력 벡터의 크기와 방향이 일정한 경향성을 가지고 높이에 따라 변화할 것이라 가정하였다. 9명의 청년군 모두는 정해진 5 종류의 높이를 총 5세트에 걸쳐 랜덤 방식으로 점프하였으며, 해당 높이를 유도하기 위해 지면으로부터 191 cm에서 221 cm 사이에 일정한 간격을 두고 마커를 배치하였다. 점프 높이가 증가함에 따라 반동 시 무게중심을 낮추고, 수평, 수직 방향의 힘을 증가시키는 것이 관찰되었는데, 이는 추진일을 증가시키기 위해 관절의 가용범위를 넓히고 초기 힘(또는 가속도) 이득을 늘리기 때문으로 생각된다.

Keywords

References

  1. Linthorne, N. P., 2001, "Analysis of Standing Vertical Jumps using a Force Platform," American Journal of Physics, Vol. 69, No. 11, pp. 1198-1204. https://doi.org/10.1119/1.1397460
  2. Bobbert, M. F., Gerritsen, K. G., Litjens, M. C. and Van Soest, A. J., 1996, "Why is Countermovement Jump Height Greater Than Squat Jump Height?," Med Sci Sports Exerc, Vol. 28, No. 11, pp. 1402-1412. https://doi.org/10.1097/00005768-199611000-00009
  3. Van Ingen Schenau, G. J., Bobbert, M. F. and De Haan, A., 1997, "Does Elastic Energy Enhance Work and Efficiency in the Stretch-shortening Cycle?," J. Appl. Biomech, Vol. 13, No. 4, pp. 389-415. https://doi.org/10.1123/jab.13.4.389
  4. Anderson, F. C. and Pandy, M. G., 1993, "Storage and Utilization of Elastic Strain Energy During Jumping," Journal of biomechanics, Vol. 26, No. 12, pp. 1413-1427. https://doi.org/10.1016/0021-9290(93)90092-S
  5. Komi, P. V., 2000, "Stretch-shortening Cycle: a Powerful Model to Study Normal and Fatigued Muscle," Journal of biomechanics, Vol. 33, No. 10, pp. 1197-1206. https://doi.org/10.1016/S0021-9290(00)00064-6
  6. Kim, S., Park, S. and Choi, S., 2014, "Countermovement Strategy Changes with Vertical Jump Height to Accommodate Feasible Force Constraints," Journal of Biomechanics, Vol. 47, No. 12, pp. 3162-3168. https://doi.org/10.1016/j.jbiomech.2014.06.013
  7. Nagano, A., Komura, T., Fukashiro, S. and Himeno, R., 2005, "Force, Work and Power Output of Lower Limb Muscles during Human Maximal-effort Countermovement Jumping," J Electromyogr Kinesiol, Vol. 15, No. 4, pp. 367-376. https://doi.org/10.1016/j.jelekin.2004.12.006
  8. McErlain-Naylor, S., King, M. and Pain, M. T. G., 2014, "Determinants of Countermovement Jump Performance: a Kinetic and Kinematic Analysis," Journal of Sports Sciences, Vol. 32, No. 19, pp. 1805-1812. https://doi.org/10.1080/02640414.2014.924055
  9. Raffalt, P. C., Alkjaer, T. and Simonsen, E. B., 2016, "Joint Dynamics and Intra-subject Variability during Countermovement Jumps in Children and Adults," J Biomech, Vol. 49, No. 13, pp. 2968-2974. https://doi.org/10.1016/j.jbiomech.2016.07.010
  10. Sinclair, J., Taylor, P. J. and Hobbs, S. J., 2013, "Digital Filtering of Three-Dimensional Lower Extremity Kinematics: an Assessment," Journal of Human Kinetics, Vol. 39, pp. 25-36. https://doi.org/10.2478/hukin-2013-0065
  11. Giakas, G. and Baltzopoulos, V., 1997, "Optimal Digital Filtering Requires a Different Cut-off Frequency Strategy for the Determination of the Higher Derivatives," Journal of Biomechanics, Vol. 30, No. 8, pp. 851-855. https://doi.org/10.1016/S0021-9290(97)00043-2
  12. Burkhart, T. A., Dunning, C. E. and Andrews, D. M., 2011, "Determining the Optimal System-specific Cut-off Frequencies for Filtering In-vitro Upper Extremity Impact Force and Acceleration Data by Residual Analysis," J Biomech, Vol. 44, No. 15, pp. 2728-2731. https://doi.org/10.1016/j.jbiomech.2011.08.011
  13. Fekete, T., Rubin, D., Carlson, J. M. and Mujica-Parodi, L. R., 2011, "The NIRS Analysis Package: Noise Reduction and Statistical Inference," PLoS ONE, Vol. 6, No. 9, p. e24322. https://doi.org/10.1371/journal.pone.0024322
  14. Kim, S. and Park, S., 2011, "Leg Stiffness Increases with Speed to Modulate Gait Frequency and Propulsion Energy," Journal of Biomechanics, Vol. 44, No. 7, pp. 1253-1258. https://doi.org/10.1016/j.jbiomech.2011.02.072
  15. Donelan, J. M., Kram, R. and Kuo, A. D., 2002, "Simultaneous Positive and Negative External Mechanical Work in Human Walking," Journal of Biomechanics, Vol. 35, No. 1, pp. 117-124. https://doi.org/10.1016/S0021-9290(01)00169-5
  16. Kim, S., Horak, F. B., Carlson-Kuhta, P. and Park, S., 2009, "Postural Feedback Scaling Deficits in Parkinson's Disease," J Neurophysiol, Vol. 102, No. 5, pp. 2910-2920. https://doi.org/10.1152/jn.00206.2009
  17. Park, S., Horak, F. B. and Kuo, A. D., 2004, "Postural Feedback Responses Scale with Biomechanical Constraints in Human Standing," Exp Brain Res, Vol. 154, No. 4, pp. 417-427. https://doi.org/10.1007/s00221-003-1674-3
  18. Thomas, C., Jones, P. A., Rothwell, J., Chiang, C. Y. and Comfort, P., 2015, "An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance," J Strength Cond Res, Vol. 29, No. 8, pp. 2176-2185. https://doi.org/10.1519/JSC.0000000000000866
  19. Yamauchi, J., Mishima, C., Nakayama, S. and Ishii, N., 2009, "Force-velocity, Force-power Relationships of Bilateral and Unilateral Leg Multi-joint Movements in Young and Elderly Women," J Biomech, Vol. 42, No. 13, pp. 2151-2157. https://doi.org/10.1016/j.jbiomech.2009.05.032
  20. Salles, A. S., Baltzopoulos, V. and Rittweger, J., 2011, "Differential Effects of Countermovement Magnitude and Volitional Effort on Vertical Jumping," European Journal of Applied Physiology, Vol. 111, No. 3, pp. 441-448. https://doi.org/10.1007/s00421-010-1665-6