• Title/Summary/Keyword: Vertex-based Geometric Features

Search Result 4, Processing Time 0.02 seconds

CURVATURE-WEIGHTED SURFACE SIMPLIFICATION ALGORITHM USING VERTEX-BASED GEOMETRIC FEATURES

  • CHOI, HAN-SOO;GWON, DALHYEON;HAN, HEEJAE;KANG, MYUNGJOO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.23-37
    • /
    • 2020
  • The quadratic error metric (QEM) algorithm has been frequently used for simplification of triangular surface models that utilize the vertex-pair algorithm. Simplified models obtained using such algorithms present the advantage of smaller storage capacity requirement compared to the original models. However, a number of cases exist where significant features are lost geometrically, and these features can generally be preserved by utilizing the advantages of the curvature-weighted algorithm. Based on the vertex-based geometric features, a method capable of preserving the geometric features better than the previous algorithms is proposed in this work. To validate the effectiveness of the proposed method, a simplification experiment is conducted using several models. The results of the experiment indicate that the geometrically important features are preserved well when a local feature is present and that the error is similar to those of the previous algorithms when no local features are present.

High-Capacity and Robust Watermarking Scheme for Small-Scale Vector Data

  • Tong, Deyu;Zhu, Changqing;Ren, Na;Shi, Wenzhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6190-6213
    • /
    • 2019
  • For small-scale vector data, restrictions on watermark scheme capacity and robustness limit the use of copyright protection. A watermarking scheme based on robust geometric features and capacity maximization strategy that simultaneously improves capacity and robustness is presented in this paper. The distance ratio and angle of adjacent vertices are chosen as the watermark domain due to their resistance to vertex and geometric attacks. Regarding watermark embedding and extraction, a capacity-improved strategy based on quantization index modulation, which divides more intervals to carry sufficient watermark bits, is proposed. By considering the error tolerance of the vector map and the numerical accuracy, the optimization of the capacity-improved strategy is studied to maximize the embedded watermark bits for each vertex. The experimental results demonstrated that the map distortion caused by watermarks is small and much lower than the map tolerance. Additionally, the proposed scheme can embed a copyright image of 1024 bits into vector data of 150 vertices, which reaches capacity at approximately 14 bits/vertex, and shows prominent robustness against vertex and geometric attacks for small-scale vector data.

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

Hierarchical Mesh Segmentation Based on Global Sharp Vertices

  • Yoo, Kwan-Hee;Park, Chan;Park, Young-Jin;Ha, Jong-Sung
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • In this paper, we propose a hierarchical method for segmenting a given 3D mesh, which hierarchically clusters sharp vertices of the mesh using the metric of geodesic distance among them. Sharp vertices are extracted from the mesh by analyzing convexity that reflects global geometry. As well as speeding up the computing time, the sharp vertices of this kind avoid the problem of local optima that may occur when feature points are extracted by analyzing the convexity that reflects local geometry. For obtaining more effective results, the sharp vertices are categorized according to the priority from the viewpoint of cognitive science, and the reasonable number of clusters is automatically determined by analyzing the geometric features of the mesh.