• Title/Summary/Keyword: Vertex shedding

Search Result 4, Processing Time 0.016 seconds

Experimental Study on the Flow around a Square Prism with a Splitter Plate (분리판이 설치된 정사각주 주위의 유동특성에 관한 연구)

  • Park Jong-Kyu;Seo Seong-Ho;Boo Jung Sook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.915-922
    • /
    • 2005
  • This experimental study is conducted to investigate effects of a splitter plate, which is set on the back side of a square prism in the uniform flow. The Reynolds number is $1.44{\times}10^{4}$ based on the width of the square prism. The measurement of velocity vector and pressure distribution are carried out 4 cases of length in the range of 0.5L to 2.0L with 0.5L interval and 3 cases of Position at 0L, 0.25L, 0.5L, Flow visualization is also executed by smoke-wire method to understand the mechanism of vortex formation The results show the strong vortex shedding patterns and drags are decreased effectively, when the position of splitter plate is 0L. And the drag reduction rate is in inverse proportion to the splitter plate length

Simulation of the Flow around and Estimation of The Force Exerted to a Cylindrical Body By the Discrete Vertex Method

  • Lee, Dong-Ki
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1995
  • Vortex shedding from a circular cylinder is simulated by means of the discrete vortex method. The shear layer emanating from the separation point is approximated as a sheet vortex which is in turn represented by a sequence of discrete vortices. The strength of these vortices is calculated from the vorticity shedding rate and introduced at a small distance off the side ($\Theta=\pm\pi/2$) of the cylinder surface in regular time step. Sheet vortex cutting, rediscretization and replacement of vortex by vortex segment are put to use to enhance stability of the sheet vortex evolution. The simulated vortex distribution pattern very well reproduces structure like the Karman vortex street. However, as for the force coefficients, the qualitative properties are correctly predicted but some more improvements are needed for the quantitative accuracy.

  • PDF

Numerical Computation of Vertex Behind a Bluff Body in the Flow between Parallel Plates (평행평판 내의 지주에 의한 와동 유동에 관한 수치해석)

  • 김동성;유영환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1163-1170
    • /
    • 1992
  • A computer program was developed to analyze the two-dimensional unsteady incompressible viscous flow behind a rectangular bluff body between two parallel plates. The Peaceman-Rachford alternating direction implicit numerical method and Wachspress parameter were adopted to solve the governing equations in vorticity-transport and stream function formulation. The steady state flow and the vortex flow behind a rectangular bluff body in a chemical were investigated for Reynolds numbers of 200 and 500. The vortex shedding was generated by a physical pertubation numerically imposed at the center of the flow field for a short time. It was observed that the perturbed flow became periodic after a transient period.

A Study on the Near Wake of a Square Cylinder Using Particle Image Velocimetry (III) - Phase Average - (PIV기법을 이용한정사각실린더의 근접후류에 관한 연구 (III) - 위상평균유동장 -)

  • Lee, Man-Bok;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1527-1534
    • /
    • 2001
  • Phase averaged velocity fields in the near wake region behind a square cylinder have been (successfully) obtained using randomly sampled PIV data sets. The Reynolds number based on the flow velocity and the vertex height was 3,900. To identify the phase information, we examined the magnitude of circulation and the center of peak vorticity. The center of vorticity was estimated from lowpass filtered vorticity contours (LES decomposition) adopting a sub-pixel searching algirithm. Due to the sinusoidal nature of firculation which is closely related to the instantaneous vorticity, the location of peak voticity fits well with a sine curve of the circulation magnitude. Conditionally-averaged velocity fields represent the barman vortex shedding phenomenon very well within 5 degrees phase uncertainty. The oscillating nature of the separated shear layer and the separation bubble at the top surface are clearly observed. With the hot-wire measurements of Strouhal frequency, we found thats the convection velocity changes its magnitude very rapidly from 25 to 75 percent of the free stream velocity along the streamwise direction when the flow passes by the recirculation region.