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Simulation of the Flow around and Estimation of

The Force Exerted to a Cylindrical Body
By the Discrete Vortex Method

Dong-Ki Lee*

Abstract

Vortex shedding from a circular cylinder is simulated by means of the discrete vortex
method. The shear layer emanating from the separation point is approximated as a sheet
vortex which is in turn represented by a sequence of discrete vortices. The strength of
these vortices is calculated from the vorticity shedding rate and introduced at a small
distance off the side (8 = £ /2) of the cylinder surface in regular time step. Sheet
vortex cutting, rediscretization and replacement of vortex by vortex segment are put to
use to enhance stability of the sheet vortex evolution. The simulated vortex distribution
pattern very well reproduces structure like the Karman vortex street. However, as for
the force coefficients, the qualitative properties are correctly predicted but some more
improvements are needed for the quantitative accuracy.

1 Introduction

The flow past a long cylindrical body is characterized by the alternating shedding of vortic-
ity from the both sides of the body for a considerable range of Reynolds number, the most
conspicuous manifestation being what is commonly called the Karman vortex street. Exam-
ples of structural elements apt to expose to this situation are abundant and are specifically
commonplace in offshore structures. This is highly undesirable phenomenon which usually
accompanies noise, vibration and sometimes disastrous destructive forces. It is therefore
essential for a designer to have a tool by which the alternating frequency and the magnitude
of forces exerted to the structural elements can be estimated.

The discrete vortex method(DVM) is a promising candidate as the tool since it is intrin-
sically more suitable to deal with the vortex-dominated problems than other numerical tech-
niques based on the velocity. This method models viscous rotational flow by inviscid one
with embedded vortices, and as such produces realistic flow patterns through only moderate
computing efforts. The implemented principles of DVM to cope with the viscosity-related
processes and effects may make one as much say as the legitimacy of the inviscid flow
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concept as the substitute for the real viscous flow has been considerably strengthened by
the appearence of the method.

Since Gerrard!!! introduced the method to investigate vortex shedding from a circular
cylinder, it has been further developed and refined by many investigators, notably, Sarpkaya,
Fink and Soh, Stansby and Dixon among others. Within the context of the method one can
treat the vortex shedding from a cylindrical body by mainly two different ways. In the first,
one pays attention only to the vortex shedding rate from the body into the flow field and
the shear layer where the vorticity is concentrated. This way of taking the problem results
in the sheet vortex model since the shed vorticity is assumed to form a sheet vortex leaving
the whole flow field irrotational except this sheet. In the other, one tries to represent the
rotational flow, that is the flow within the boudary layer and the wake, by randomly located
vortices all of which were created at one time or another in the vicinity of the body surface
and convected to their current position. This way of treating the problem gives birth to the
vortex cloud model.

The present investigation follows the sheet vortex model and introduces techniques to
overcome difficulties intrinsically confronted with therin. This model was taken up by
Sarpkayal>®! in his series of investigations. Fink and Soh!*! made a notable contribution to
improve the workability of the method. It is a well known fact that numerical treatment of
evolution of sheet vortex is highly likely to become unstable, the reason coming from the
two facts that a sheet vortex itself shows intrinsic instability and that the numerical error
due to the discretization can bring in over-sensitive consequences.

2 Description of the flow field

As the viscosity is assumed to be ineffective and the vorticity prevalent in the region is
replaced by a number of discrete lumped vortices, the flow field shown in Fig.1 can be
represented by the complex velocity potential. The boundary condition of zero normal
component of relative velocity at the cylinder surface is accurately satisfied by a doublet
at the cylinder center for the uniform oncoming stream and an image vortex at the inverse
point for each point vortex outside the cylinder. The image vortex of a vortex located at =,
with strength Ty, is given by

strength :  TI'jp = T (D
pOSitiOl’l : Zig = az/Ek.
Then the complex potential describing the flow field is expressed, when there are M,

vortices outside the cylinder, by
My

a’ 1
o(z)=U (z + T) =5 Z [y [log(z — z) — log(z — z1)].
z T k=1
If every variable is nondimensionalized on the basis of U and a, and is denoted by just the
plain symbol, this equation becomes
1 g M

p(z) =2+ -~ o Z Iy {log(z — z) — log(z — z11)] (2)
T k=1
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Figure 1: Flow around a circular cylinder

where 2, = 1/Z;. (3)

The expression for the velocity is given in conjugate form by the derivative of this equation,

_ _dy
w(“’) dZ
M,

= 1L~iv=(1—;15>—%zrk( ! - = 1~ ) 4)

3 Evolution of the shear layer

The shear layer, its thickness being ignored, is supposed to form a sheet vortex starting from
the separation point. This sheet vortex is of course to be represented by discrete vortices
all of which set out sequentially at regular time interval ideally from the separation point
but actually, for brevity, from a prescribed fixed point.

3.1 Nascent vortices

The vortex to be newly introduced at each time step is called the nascent vortex. Its strength
is determined from the vorticity shedding rate as shown in the following equationl®!

v = %uf At where At : time step (5)
in which u; denotes, in the real situation, the velocity at the edge of the boundary layer
at the separation point. In the present inviscid flow model, the boundary layer thickness
has to be taken as none but zero and, as for the separation points, the control points set at
§ = +7/2 on the both sides of cylinder surface are chosen instead to estimate the shedding
rate. Then, to endow the nascent vortices with appropriate sign, it is better to write the
expression for the nascent vortex strengths as

1
T = 5 e lugs| At, where j =1, 2. (©)
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The circumferential component of velocity ug, the positive direction being counterclockwise,
is calculated from

Ug; = —C\(Ciac" Ecj) (7)
where W.; = W(z;)
t.; = arg z.; : angular pasition of the j-th control point
j=12

The initial starting position of this nascent vortices is set to a point a small distance 6 off
the cylinder surface to make them convect easily. If these positions are denoted by (; and
(2, they are expressed as

G :(1+6)ch, J=12 ¢))

Once created, these nascent vortices are enrolled to the sequence of vortices previously shed
into the flow field.

3.2 Convection of the vortices

As a two-dimensional point vortex does not induce velocity at its own position, the expres-
sion for the velocity eq.(4) should be accordingly adjusted when the velocity at a vortex
position is calculated. If the j-th vortex is considered, for instance,

1 i | M 1 1 1
W(z)=1— = — — T -~ -T 9
( J) ij 2 kg:l k (Zj -~ Zk Zj -Z[k> JZ]' — Z[j ( )

kg

and the j-th vortex convects with this velocity so that its position at the next time step is

(zj)new = ZzZj + w(zj) At. (10)

4 Schemes to enhance stability

The convection scheme shown as eq.(10) is liable to develop instability originating from
discretization if no remedy is provided to keep the sheet vortex evolution an orderly process.

4.1 Sheet vortex cutting

The vortex sequence emerging from a nascent vortex position exhibits an inflection point
at some stage and the sheet curls up with advance of the time steps thereafter around
this nucleus to form a double-layered spiral. If this double-layered spiral is formed, the
distance between vortices lying on the neighbouring sheet can be smaller than that between
neighbouring vortices along the sheet so that the induced velocities are unduly great as
to destroy the spiral structure. Before this happens therefore, it is desirable to cut the
sheet at around the inflection point when certain cutting conditions are satisfied and let
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the separated group of vortices go by themselves. The actual cutting is done through two
operations; one removing a few vortices from the tail of the group to be detached and the
other performing rediscretization separately within each group of vortices. A reasonable
set of cutting conditions might be:

(1) The detached vortices should be greater than a certain specified number, typically any
between fifteen to twenty;

(2) An inflection point should appear;

(3) The curvature in front or after the inflection point should be greater than a specified
value.

The group of vortices so separated is called a vortex cluster and there would be a number
of vortex clusters emerging from each side of the cylinder.

4.2 Rediscretization of sheet vortex

Suppose that a straight sheet vortex segment of constant strength density exists in the field
by itself. Obviously this segment cannot translate, although can rotate around its midpoint,
by its own induced velocity. This fact suggests that the representative point of a vortex
segment, the so-called control point, has to be chosen at its midpoint to prevent occurrence
of the inadvertent translation.

When the shed vortices are convected according to the convection scheme eq.(10) dis-
tances between the neighbouring vortices along a vortex cluster at any time step are generally
uneven. It is then desirable to relocate the vortices so that each of them lies at the mid-
point of the segment that it assumes to represent. The simplest way of doing this is to put
the vortices even-spaced along the curve of the vortex cluster. Fink and Soh!* called this
operation rediscretization and demonstrated that it resulted in a considerable delay of onset
of the numerical instability. The principles to be observed in the rediscretization are:

(1) The vortex cluster curve should be unchanged;

(2) The strength density along the curve should be kept unchanged.

4.3 Restriction on the induced velocity magnitude

Notwithstanding these operations, a vortex can still haphazardly come close to another so
that the mutual induced velocities are excessively great. As this kind of trouble is due to
discretization, it can be avoided by replacing the concerned vortices by vortex segments in
calculating the induced velocity. It is necessary to apply this rectification whenever any
two vortices approach closer than their either side segment length.



6 Simulation of the Flow around and Estimation of the Force Exerted to ...

5 Administration of the shed vortices

A systematic way of handling the shed vortices may be the use of arrays to store number
of clusters and number of vortices in each cluster such as shown below.

n(7) : number of clusters originating from the j-th side
noc(kj, j) : number of vortices in the (k;,7) cluster
where k; = 1,2,...,n.(j)
i = 1,2

The number of vortices shed from the j-th side and the total number of vortices are then
calculated respectively from

ne(J)
k=1
[t is to be noted that enrolling the nascent vortices is acomplished by
[mt(j)]new = mt(]) + 1 (13)
[oc(nc(5), Hlnew = Nwe(ne(d),5) +1 (14)
z(my(4),J) = ¢ (15)
L(m(4),5) = (16)

where 7 = 1,2

and whenever the cluster cutting is performed n.(j), n..(n.(j) =1, ) and n,.(n.(y), j) are
to be renewed.

6 Stimulation of asymmetry

Imposing some artificial disturbance to trigger asymmetry of flow pattern is a necessity
in the DVM simulation. Sudden shift of vortices shed from one side of the cylinder at a
suitable time step works well and is employed in the present investigation, as shown below.

[k, Dlanittea = 2(F.2)+ &, B=T1.2000,m (2) (17)
where ?, : shifting time step.

7 Force calculation

Although the force exterted to the cylinder can be calculated in principle by the pressure
integration over the surface, it is more convenient to use the following force formulac(i
obtained from the extended Blasius theorem!”

M, i

2
Co+iCp =3 Telwn = W) + (1= i ) 3 e (18)

h=1 S
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The velocity of the image vortices and the growth rate of the nascent vortices appearing in
this equation are dealt with in the following.

* velocity of image vortices
Since the position of an image vortex is specified by eq.(3), its velocity is expressed
by the time derivative of that equation. Hence,

Wik = Une — Wik
Wk
= -2 (19)

2k

* growth rate of the nascent vortices
Since the strength of the nascent vortices are determined from eq.(6)

prli luﬂalAt“g{T
= |u -yAtcs{f—z -Afjr [ S ” (20)
63 o CI = k (zcj_zk)z (ch—:’ilk)Q )

8 Calculated results and discussion

Success of vortex shedding simulation by the DVM depends unfortunately quite sensitively
on the values of the discretization parameters. Among the four parameters At, 4, shifting
time step ¢, and shifting distance ¢, the best working values for Af and 6 are known
from experiences to be 0.2 and 0.118 respectively. These values are used in the present
simulation. As for the other two parameters concerned with stimulating asymmetry, it
was found that the most suitable values were twelve and 1.0 respectively through a large
number of numerical experiments. The vortex distribution patterns so obtained are shown
in Fig.2 through Fig.5 sequentially in the time step interval 10. The patterns observed in
the Karman vortex strect are very well reproduced. The instability due to discretization
has been successfully suppressed up to the present time step and can be done so a little
further. Up until this time the foremost vortex cluster convects about twenty five radii. It
the computation proceeds still further, the effect of instability creeps in rapidly and destroys
the orderly vortex street structure.

The force coefficient curves obtained with the same values of the parameters are shown
in Fig.6 and Fig.7. In accordance with the stipulation of the DVM that the measured force
and the predicted one are 1o be directly compared in spite of the frictional drag, this being
usually negligibly small compared with the pressure drag, included in the former. Sarpkaya’s
experimental measurements!” are shown in Fig.8 and Fig.9 for comparison. Although no
definitive statements can be formulated about the results as the amplitude of oscillation of
the lift coefficient and the magnitude of the drag coefficient appear to be growing with
progress of the time step, a few points may be noticed: firstly the magnitude of drag
coefficient agrees with the measured values within the experimental accuracy, secondly the
predicted period of lift coefficient oscillation agrees better with that of the measured curve
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for lower Reynolds number and lastly the lift coefficient is greatly over-predicted. This
last point is one of the general trends of the DVM analysis. In addition, the fact that the
force coefficients were more sensitive to the effect of the instability due to discretization
than the vortex distribution pattern may be worth noting.

Other combination of values of the discretization parameters may work as well. The
workability is to be assessed on both the simulated vortex distribution pattern and the force
coefficient curves. No rational principle has been formulated for the choice of suitable
values of the shifting time step and the shifting distance. A rough working guideline found
through the experience of the present study is that for a smaller shifting time step, a smaller
shifting distance is likely to match and, to reduce the effect of artificial disturbance, the
smaller shifting distance is the more preferrable.

As for the value of At, compromise should be sought between the two facts that it
1s the fundamental parameter of the problem discretization and as such cannot become so
small as to lose meaning of discrete treatment of the problem and that it is concerned with
how detail the flow is to be represented. In this respect, the value 0.2 is thought to be a
choice based on a little more weight to the first fact than the latter. A tentative comment
on the value of ¢ is that it should be adjusted proportionally with the value of A¢. This is
only a conjecture not systematically explored in the present study, but a possible topic for
the future research.
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Figure 2: Vortex distribution at the time step ¢ = 100
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Figure 3: Vortex distribution at the time step ¢ = 110
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Figure 4: Vortex distribution at the time step ¢ = 120
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Figure 5: Vortex distribution at the time step ¢ = 130
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