• Title/Summary/Keyword: Vermiculite Board

Search Result 6, Processing Time 0.021 seconds

Study on characteristics of board prepared by microwave drying process of coal bottom ash and vermiculite (바텀애쉬를 이용한 흡음 내장재 개발에 관한 연구)

  • Jun, Hyun Chul;Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • In this study, we prepared the board of vermiculite materials utilizing coal bottom ash from the Western thermal power stations in Korea and obtained experimental data in applications for building interior materials with the characteristics of sound absorption. To produce the mixture materials of vermiculite and coal bottom ash, we used a microwave drying process. In addition, a ball milling process was used to produce particles of coal bottom ash with a uniform size of $65{\mu}m$. When the board made from mixture materials of vermiculite and coal bottom ash were produced with bottom ash sulfur concentrations of 5, 10 wt%, maximum bending loads were analyzed. These experimental results would contribute much to fundamental data essential to the recycling technology of coal bottom ash.

Development of Vermiculite Board to Secure the Fire Resistance Performance of Light-Frame Wood Structural Wall (경골목구조 벽체의 내화성능확보를 위한 질석보드 개발)

  • Yoo, Seok Hyung;Cheong, Chang Heon
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.40-45
    • /
    • 2018
  • It is considered that vermiculite as an inorganic material is highly effective when it is used as a building finishing material because it is eco-friendly. Vermiculite has excellent properties such as fire resistance, heat insulation, sound absorption as well as prevention of condensation, deodorization and aesthetics. In this study, we developed a finishing board with vermiculite as its main material and mixed with mineral loose wool (VB-L) or mineral powder (VB-P), and conducted fireproof test and insulation test. In addition, fire resistance tests were carried out by applying the two developed vermiculite boards as finishing materials for the standard wall details of light frame wood structures (KS F 1611-1). As a result of the fire resistance test, the VB-L specimen showed better fire resistance than the VB-P specimen. Both vermiculite boards showed sufficient fire resistance performance of 2 hours for a thickness of 30 mm.

Thermal Conductivity Properties of Magnesium Oxide Matrix using Vermiculite and Anthracite (버미큘라이트 및 안트라사이트를 활용한 산화마그네슘 경화체의 열전도율 특성)

  • Lim, Hyun-Ung;Gwon, Oh-Han;Pyeon, Su-Jung;Lim, Gguk-Jeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.80-81
    • /
    • 2017
  • The study conducted a thermal conductivity test of magnesium oxide to manufacture boards using absorbent to produce board of radon gas molecules that are absorbed into the indoor air pollutants, which are currently in question, among other indoor air pollutants. Using material are the vermiculite and anthracite, in case of the vermiculite, which results in large porosity due to the expansion, in case of the anthracite, which characteristic generates pore on the matrix. As a result of the experiment, the lowest value was given to 0.6161 kcal/mh℃ which adding vermiculite 10% and anthracite 40%. However, adding vermiculite 40% and anthracite 10%, slightly higher 0.7229 kcal/mh℃, it is deemed the anthracite has more porosity than the vermiculite and, it judged that pore occurrence during the mixing process, appeared that the heat conductivity go down.

  • PDF

Development of Semi-Incombustible Composite Insulating Board Containing Pine Leaf Powder and Vermiculite (송엽분과 질석을 포함한 준불연 단열복합보드의 개발)

  • Cheong, Chang Heon;Yoo, Seok Hyung
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.27-34
    • /
    • 2018
  • A Semi-Incombustible Composite Insulation Board (SICIB) that can be applied to building construction and ships was developed. The SICIBs comprised of pine leaf powder, vermiculite. The incombustibility, semi-incombustibility, and U-factor of the developed SICIBs were measured. The incombustibility of the each SICIB was determined by the proportion of combustible flexible binder and pine leaf powder. SICIB satisfied the incombustibility test without a combustible flexible binder and pine leaf powder. In addition, SICIB with 6% of pine leaf ensured its semi-incombustible performance. A combustible flexible binder or pine leaf powder over 6% failed the fire-resistant performance of SICIB. In addition, SICIBs with incombustible/semi-incombustible finishing and a 200 mm insulating layer (glass wool and sprayed poly urethane foam) met the U-factor of an external wall for buildings described in the Korean building code.

Absorption Ratio and Density Properties According to Absorbent Type Based on Magnesium Oxide Matrix (산화마그네슘 경화체 기반 흡착재 종류에 따른 밀도 및 흡수율 특성)

  • Gwon, Oh-Han;Pyeon, Su-Jung;Lim, Hyun-Ung;Kyung, In-soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.182-183
    • /
    • 2017
  • This research identifies radon gas absorption mechanism by adsorption materials, replacing gypsum board with radon emissions, the density and absorption rates of magnesium were carried out using vermiculite, anthracite, powdered active carbon, bentonite, illite, diatomite as a basic study on the fire resistance type of radon Gas reduction type with absorption and decomposition. As a result of the experiment, diatomite showed the lowest density, and the highestt value was the highest. For the absorption rate, bentonite showed the highest absorption rate, and the anthracite showed the lowest absorption rate.

  • PDF

Combustion Characteristics of Bamboo Charcoal Boards (대나무숯 성형보드의 연소특성)

  • Park, Sang-Bum;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The fire retardant bamboo charcoal (BC) boards were manufactured for interior building materials in this study, The BC boards were manufactured by mixing and pressing of the bamboo charcoal, expanded vermiculite, and inorganic binder. The combustion behaviors of the BC boards were investigated using a cone calorimeter at an incident heat flux of 50 kW/$m^2$. Three building materials (plywood, BC board of Japan, and gypsum board) were used to observe the burning behaviors of weight loss, total heat release rate, and maximum heat release rate. Surface test and toxicity evaluation of the BC board were also conducted. The weight loss of the BC board (12.0%) was lower than the nonflammable gypsum board (15.6%) after burning of 10 min. Total heat release of the BC was 3 MJ/$m^2$ (KS standard 8 MJ/$m^2$) and total heat release rate of the BC was 20 kW/$m^2$ (KS standard 200 kW/$m^2$). Therefore, the BC boards were adjustable for the third-grade flame retardant building materials. External appearance change and mouse toxicity were not found in the BC boards after the combustion test.