• Title/Summary/Keyword: Verification and validation

Search Result 563, Processing Time 0.313 seconds

A Study on the Modeling Method of Performance Evaluation System for MW Scaled Energy Storage System Using the PSCAD/EMTDC (PSCAD/EMTDC를 이용한 MW급 ESS용 성능평가설비 모델링 방안에 관한 연구)

  • Kang, Min-Kwan;Choi, Sung-Sik;Park, Jae-Beom;Nam, Yang-Hyeon;Kim, Eung-Sang;Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.885-891
    • /
    • 2017
  • The energy storage system(ESS) is a core component for exchanging the power system structure of the unidirectional power flow into a bidirectional structure. Its important role has been increasing because it has multiple functions such as output stabilization of new renewable energy, demand management, frequency regulation, etc. However, the performance evaluation technology of ESS in korea is lower than one of advanced countries and the recognition of standardization is also lack compared to advanced countries. Furthermore, in order to more accurately and reliably validate the performance of the ESS in advanced countries, it has been required to perform not only performance testing by H/W devices but also performance verification by S/W tool. Therefore, in order to verify the performance testing of ESS by S/W tool, this paper proposes the modeling method of performance testing devices for MW scaled ESS by using the PSCAD/EMTDC S/W, based on real testing devices in domestic institute. From the simulation results of proposed modeling method, it is confirmed that the proposed modeling method is a useful tool for performance validation of ESS.

Simulation-based Analysis of Electric Power Consumption Efficiency for Self-Driving Roller Conveyor Systems (시뮬레이션 기반 자체 구동 롤러 컨베이어 물류시스템의 전력 효율 분석)

  • Kim, Young J.;Park, Hee N.;HAM, Won K.;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.97-105
    • /
    • 2015
  • This paper is to analyze the efficiency of power consumption in logistic systems that are based on self-driving roller conveyors by the simulation technology. The improvement of the efficiency brings advantages for reducing greenhouse gas emission and logistics costs. A self-driving roller conveyor is operated only when products are loaded on itself. Thus, the self-driving roller conveyor systems consume less electric power than continuous-driving roller conveyor systems. In this paper, we design a DEVS (Discrete-Event based System) based simulation model and construct self-driving roller and continuous-driving roller conveyor models. For the verification and validation of the designed simulation system and conveyor models, we model a corresponding logistic model for the experimental environment and compare between the model and a real system. The main objective of this paper is to describe the power consumption advantage of self-driving roller conveyor based logistic systems using a simulation method.

Development of a Simulation Model for Supply Chain Management of Modular Construction based Steel Bridge (모듈러 공법 기반 강교 공급사슬 관리를 위한 시뮬레이션 모형 개발)

  • Lee, Jaeil;Jeong, Eunji;Kim, Sinam;Jeong, Keunchae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.2
    • /
    • pp.3-15
    • /
    • 2022
  • In this study, we develop a simulation model for Supply Chain Management (SCM) of modular construction based steel bridge. To this end, first, Factory Production/Site Construction system data for the steel bridge construction were collected, and supply chain, entities, resources, processes were defined based on the collected data. After that, a steel bridge supply chain simulation model was developed by creating data, flowchart, and animation modules using Arena software. Finally, verification and validation of the model were performed by using animation check, extreme condition check, average value test, Little' s law test, and actual case value test. As a result, the developed simulation model appropriately expressed the processes and characteristics of the steel bridge supply chain without any logical errors, and provided accurate performance evaluation values for the target system. In the future, we expect that the model will faithfully play a role as a performance evaluation platform in developing management techniques for optimally operating the steel bridge supply chain.

Classification of Mental States Based on Spatiospectral Patterns of Brain Electrical Activity

  • Hwang, Han-Jeong;Lim, Jeong-Hwan;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2012
  • Classification of human thought is an emerging research field that may allow us to understand human brain functions and further develop advanced brain-computer interface (BCI) systems. In the present study, we introduce a new approach to classify various mental states from noninvasive electrophysiological recordings of human brain activity. We utilized the full spatial and spectral information contained in the electroencephalography (EEG) signals recorded while a subject is performing a specific mental task. For this, the EEG data were converted into a 2D spatiospectral pattern map, of which each element was filled with 1, 0, and -1 reflecting the degrees of event-related synchronization (ERS) and event-related desynchronization (ERD). We evaluated the similarity between a current (input) 2D pattern map and the template pattern maps (database), by taking the inner-product of pattern matrices. Then, the current 2D pattern map was assigned to a class that demonstrated the highest similarity value. For the verification of our approach, eight participants took part in the present study; their EEG data were recorded while they performed four different cognitive imagery tasks. Consistent ERS/ERD patterns were observed more frequently between trials in the same class than those in different classes, indicating that these spatiospectral pattern maps could be used to classify different mental states. The classification accuracy was evaluated for each participant from both the proposed approach and a conventional mental state classification method based on the inter-hemispheric spectral power asymmetry, using the leave-one-out cross-validation (LOOCV). An average accuracy of 68.13% (${\pm}9.64%$) was attained for the proposed method; whereas an average accuracy of 57% (${\pm}5.68%$) was attained for the conventional method (significance was assessed by the one-tail paired $t$-test, $p$ < 0.01), showing that the proposed simple classification approach might be one of the promising methods in discriminating various mental states.

A study of Analysis Method of Human Factors for Operation Improvement (운용성 향상을 위한 인적 요소 분석 방법에 관한 연구)

  • Chung, SungHak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.7
    • /
    • pp.57-67
    • /
    • 2013
  • This study suggests for effective operation of systematic analysis method for human factors which is based on the requirement architecture framework a requirement process to manage requirements for improvement is discussed, such as in requirements generation, database construction, management of experimental design, and management of the design traceability. For the objectives, we analyzed the method construct of the starting point views of user requirement which is adopted the requirement architecture concept to cover the whole activities required to do and the human factors guidelines and standards are suggested for verification and validation of the develop requirements. It is getting more attention as the operation of the enabling systems goes up these days. Throughout the propose of this study, human factors requirement database design presented in operational environment system for enabling system which is based on case study using a computer aided se tool. This study will be contributed to how the operational requirement database for the enabling system and operational human factors can be constructed in an integrated system design fashion.

A Development of DMB-AF Player Supporting 3D Video Contents (3D 비디오 콘텐트를 지원하는 DMB-AF 플레이어 개발)

  • Kim, Yong-Han;Park, Min-Kyu
    • Journal of Broadcast Engineering
    • /
    • v.16 no.3
    • /
    • pp.542-551
    • /
    • 2011
  • Recently an extension to DMB-AF (Digital Multimedia Broadcasting Application Format) standard was proposed in [1] without sufficient validation for industrial application due to incomplete implementation. The extended DMB-AF can include stereoscopic video and stereoscopic images for interactive service data, i.e., MPEG-4 BIFS data, in addition to the existing 2D video and 2D images for BIFS services. The contents in the extended DMB-AF can provide a temporal mixture of 2D/3D video presentations possibly with or without 2D/3D images for BIFS services. In this paper we developed DMB-AF player software that can play the extended DMB-AF files and authored several test files for its verification. As a result, we introduced a new method for indicating dependencies of 3D media tracks to improve the extension in [1] and validated the extended DMB-AF with the improvement.

A Study on Certification of Electronic Engine Controls (항공기 엔진제어시스템 인증기술 개발)

  • Lee, Kang-Yi;Han, Sang-Ho;Jin, Young-Kwon;Lee, Sang-Joon;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.104-109
    • /
    • 2005
  • The aircraft gas turbine engines with the Electronic Engine Controls(EEC) had been developed to save fuel and enhance their performance in the early days, and had employed the health monitoring function in the Full Authority Digital Engine Controls(FADEC) to improve their reliability. This has led to an increasing demand for the certification technology of these controls. The design and certification issues of power supply, aircraft supplied data, failure modes, software verification/validation, and lightning requirements need to be addressed. This paper presents the design considerations and the certification techniques applied to the electronic engine controls. And it is believed that this paper will be basis to establish a requirement in Korean Airworthiness Standard.

On the Development of Authoritative Representations of Torpedo Systems for Engagement Level Simulation (교전수준 어뢰체계 표준모델 개발 방안 연구)

  • Shin, Ji-Hwan
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.19-28
    • /
    • 2007
  • We considered the authoritative representations of torpedo systems that was the engagement level model to develop system specifications and to analyze operational requirements on concept design phase. The Work Breakdown Structure(WBS) of models was defined about authoritative representations of the torpedo systems. The communication of information among each subsystems and input/output parameters were defined. In the heavy weight and light weight torpedo model, presetter, underwater maneuver, war head, sonar, guidance and control, propulsion subsystem modeling were developed for heavy-weight and the light-weight torpedo systems. The authoritative representations of torpedo systems have similar structures with those of the engineering level models and could be verified via engagement level simulations according to the V&V process in the future.

  • PDF

Realization of home appliance classification system using deep learning (딥러닝을 이용한 가전제품 분류 시스템 구현)

  • Son, Chang-Woo;Lee, Sang-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1718-1724
    • /
    • 2017
  • Recently, Smart plugs for real time monitoring of household appliances based on IoT(Internet of Things) have been activated. Through this, consumers are able to save energy by monitoring real-time energy consumption at all times, and reduce power consumption through alarm function based on consumer setting. In this paper, we measure the alternating current from a wall power outlet for real-time monitoring. At this time, the current pattern for each household appliance was classified and it was experimented with deep learning to determine which product works. As a result, we used a cross validation method and a bootstrap verification method in order to the classification performance according to the type of appliances. Also, it is confirmed that the cost function and the learning success rate are the same as the train data and test data.

Development and Performance Validation of Integrated Bus Electronic Unit for Small Satellite (소형위성용 통합형 전장박스의 개발 및 성능검증)

  • Chang, Jin-Soo;Kim, Dong-Woon;Kang, Suk-Jin;Lee, Byung-Hoon;Moon, Byoung-Young;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.353-362
    • /
    • 2007
  • Unlike large satellites, small satellites, such as nanosatellite and microsatellite, can provide a limited interior space for components mounting. In order to mitigate this issue, the compact Bus Electronic Unit(BEU) that integrates satellite electronic modules, combining most of bus subsystems and payload electronic modules into one unit, has been developed for HAUSAT-2 nanosatellite. This paper addresses the design and environmental test result analyses of BEU. The vibration and thermal vacuum tests were conducted at qualification level for the verification of design margin of newly developed BEU. The performance of individual electronic subsystem modules has been verified through performance tests before and after the qualification tests. It was confirmed that the natural frequency of BEU satisfies the design stiffness requirement without structural damage in the vibration test. Thermal analysis results were also almost consistent with test results through modified thermal analysis modeling.