• Title/Summary/Keyword: Venturi

Search Result 168, Processing Time 0.02 seconds

Papers : Application of Cavitating Venturi for Stable propellant feed system (논문 : 안정적인 액체연료 공급을 위한 Cavitating Venturi 의 응용)

  • Park,Hui-Ho;Kim,Yu;Jang,Eun-Yeong;Lee,Su-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.88-94
    • /
    • 2002
  • For the pressurized propellant supply system of liquid rocket, feed pressure is determined with respect to the chamber pressure of normal combustion state. However, during ignition period the initial chamber pressure is atmosopheric. This may cause overflow, hard-start and even critical damage for the engine. This paper proposes an improved propellant feed system for the stable combustion of liquid rocket. The proposed system utilizes the cavitating venturi to provide stable mass flow rate. Cavitating venturi offers unique flow control capabilities at normal and abnormal combustion state, because flow rate is soley dependent on the upstream absolute pressure and fluid properties, but independent on th downstream condition. Experimental variables are propellant feed pressure and chamber pressure. The effectiveness of cavitating venturi increased when the ratio of actual feed pressure to the cavitating venturi design pressure is increased. It is also found that Kerosene if more effective to supply stable mass flow rate than LOx.

Experimental investigation of aerosols removal efficiency through self-priming venturi scrubber

  • Ali, Suhail;Waheed, Khalid;Qureshi, Kamran;Irfan, Naseem;Ahmed, Masroor;Siddique, Waseem;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2230-2237
    • /
    • 2020
  • Self-priming venturi scrubber is one of the most effective devices used to collect aerosols and soluble gas pollutants from gaseous stream during severe accident in a nuclear power plant. The present study focuses on investigation of dust particle removal efficiency of the venturi scrubber both experimentally and theoretically. Venturi scrubber captures the dust particles in tiny water droplets flowing into it. Inertial impaction is the main mechanism of particles collection in venturi scrubber. The water injected into venturi throat is in the form of jets through multiple holes present at venturi throat. In this study, aerosols removal efficiency of self-priming venturi scrubber was experimentally measured for different operating conditions. Alumina (Al2O3) particles with 0.4-㎛ diameter and 3950 kg/㎥ density were treated as aerosols. Removal efficiency was calculated for different gas flow rates i.e. 3-6 ㎥/h and liquid flow rates i.e. 0.009-0.025 ㎥/h. Experimental results depict that aerosols removal efficiency increases with the increase in throat velocity and liquid head. While at lower air flow rate of 3 ㎥/h, removal efficiency decreases with the increase in liquid head. A theoretical model of venturi scrubber was also employed and experimental results were compared with mathematical model. Experimental results are found to be in good agreement with theoretical results.

Control of cavitation in Venturi using hemispherical bump (반구형 융기부를 이용한 벤투리에서의 캐비테이션 제어)

  • Jongbin Hwang;Yisu Shin;Jooha Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.91-101
    • /
    • 2023
  • In this study, we investigated how the performance of a Venturi changes when a hemispherical bump is applied to the divergent part of the Venturi tube and what causes the performance difference. The Venturi-tunnel experiment was conducted in the Reynolds number range of 0.2 × 105 - 1.2 × 105 and cavitation number range of 0.9 - 10. The bump was found to reduce the pressure loss coefficient and increase the discharge coefficient by shortening the cavitation length. The decrease in the cavitation length by the bump was explained by the strengthening of the re-entrant jet. The wake generated from the hemispherical bump seems to increase the adverse pressure gradient on the Venturi surface, thereby strengthening the re-entrant jet.

Prediction of Venturi Effect on Pressure Drop in Pulse Air Jet Bag Filter (충격기류식 여과집진장치에서 벤츄리가 압력손실에 미치는 영향)

  • Moon-Sub Jung;Jung-Kwon Kim;Yong-Hyun Chung;Jeong-Min Suh
    • Journal of Environmental Science International
    • /
    • v.32 no.9
    • /
    • pp.659-669
    • /
    • 2023
  • The purpose of this study is to predict the pressure drop due to the installation of venturi under diverse operating conditions such as dust concentration, pulse interval and pressure, and filtration velocity using algebraic-linear regression model and use it as an economic data and efficient operating condition for a pulse air jet bag filter. A pilot scale bag filter with a filter a filter size(Ø140 × 850ℓ, 12) was used, and the filters used in the experiment were the polyester filters most commonly used in real industrial sites. The SAS 9.4 program (SAS Institute, USA) was used to predict and to determine the effects of inlet concentration (Ci), pulse interval (Pi) and pressure (Pp), filtration velocity (Vf), presence or absence of venturi, etc. The results are shown below. The variation in pressure drop with or without venturi installation was 38.8 mmAq when venturi is installed and 47.6 mmAq when venturi is not installed, indicating a difference in pressure drop of 8.8 mmAq depending on venturi installation. It is estimated that the efficiency can be improved by about 18.5% if the venturi is installed.

Manufacture and Measurement Uncertainty Analysis of a Venturi Pipe for Airflow Measurement in Altitude Engine Test (엔진 고공 시험에서 공기 유량 측정용 벤투리 파이프의 제작 및 측정 불확도 분석)

  • Yang, In-Young;Oh, Joong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.36-41
    • /
    • 2010
  • Design, manufacture and calibration procedures of a venturi pipe flowmeter for airflow measurement in altitude engine test were discussed. Altitude engine test using venturi pipe was given as an example. The venturi was designed per the ISO standard of ISO5167, and was intented to include the entire airflow range in the test envelope of the gas turbine engine. Measurement uncertainty analysis was performed in the design procedure to investigate the effect of venturi geometry and sensor specification upon the measurement uncertainty. Manufacturing process was designed to minimize the deviation from the geometry of design. Calibration was performed to get the relationship between the discharge coefficient and the pipe Reynolds number. Then the uncertainty was assessed again using real data acquired during engine test. Through these procedures, it was possible to maintain the uncertainty of airflow measurement under 1 % for most of the operating envelope of the gas turbine engine. The discharge coefficient of the venturi pipe showed agreement with the value suggested in the ISO standard ISO5167-4 within 0.6 %.

Hydraulic Characteristics in the Movable Venturi Flume with Circular Cone (원뿔형 벤츄리수로의 수리특성)

  • Kim, Dae Geun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2013
  • This study analyzed the hydraulic characteristics of a venturi flume with a circular cone using a 3-D numerical model which uses RANS(Reynolds-Averaged Navier-Stokes Equation) as the governing equation. The venturi flume with the circular cone efficiently measures the discharge in the low-flow to high-flow range and offers the advantage of accurate discharge measurements in the case of a low flow. With no influence of the tail-water depth, the stage-discharge relationship and the flow behaviors were analyzed to verify the numerical simulation results. Additionally, this study reviewed the effect of the tail-water depth on the flow. The stage-discharge relationship resulting from a numerical simulation in the absence of an effect by the tail-water depth showed a maximum margin of error of 4 % in comparison to the result of a hydraulic experiment. The simulation results reproduced the overall flow behaviors observed in the hydraulic experiment well. The flow starts to become influenced by the tail-water depth when the ratio of the tail-water depth to the total head exceeds approximately 0.7. As the ratio increases, the effect on the flow tends to grow dramatically. As shown in this study, a numerical simulation is effective for identifying the stage-discharge relationship of a venturi flume with various types of venturi bodies, including a venturi flume with a circular cone.

Separation of Limonen from Waste Citrus Peels by Venturi Vacuum Drying and Production of Bioethanol (벤튜리 진공건조에 의한 폐 감귤박으로부터 리모넨 분리 및 바이오 에탄올 생산)

  • Seung-Geon Kim;Ho-Won Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.42-47
    • /
    • 2024
  • Limonene was separated from waste citrus peels by a vacuum drying process with a venturi, and bioethanol was produced from dried citrus peels. Vacuum drying using venturi was very effective in removing moisture and limonene compared to hot air drying and natural drying. Citrus peels prepared by venturi vacuum drying were the most suitable for ethanol fermentation. The moisture and limonene content of the citrus peels dried for 15 hours were 17.0% and 3.2%, respectively. By venturi vacuum drying, essential oil containing limonene and floral water were obtained, respectively. The amount of essential oil separated by venturi vacuum drying was 4.21 mL essential oil/kg citrus peel, 79.9% of the separated essential oil was limonene.

Investigation of dust particle removal efficiency of self-priming venturi scrubber using computational fluid dynamics

  • Ahmed, Sarim;Mohsin, Hassan;Qureshi, Kamran;Shah, Ajmal;Siddique, Waseem;Waheed, Khalid;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.665-672
    • /
    • 2018
  • A venturi scrubber is an important element of Filtered Containment Venting System (FCVS) for the removal of aerosols in contaminated air. The present work involves computational fluid dynamics (CFD) study of dust particle removal efficiency of a venturi scrubber operating in self-priming mode using ANSYS CFX. Titanium oxide ($TiO_2$) particles having sizes of 1 micron have been taken as dust particles. CFD methodology to simulate the venturi scrubber has been first developed. The cascade atomization and breakup (CAB) model has been used to predict deformation of water droplets, whereas the Eulerian-Lagrangian approach has been used to handle multiphase flow involving air, dust, and water. The developed methodology has been applied to simulate venturi scrubber geometry taken from the literature. Dust particle removal efficiency has been calculated for forced feed operation of venturi scrubber and found to be in good agreement with the results available in the literature. In the second part, venturi scrubber along with a tank has been modeled in CFX, and transient simulations have been performed to study self-priming phenomenon. Self-priming has been observed by plotting the velocity vector fields of water. Suction of water in the venturi scrubber occurred due to the difference between static pressure in the venturi scrubber and the hydrostatic pressure of water inside the tank. Dust particle removal efficiency has been calculated for inlet air velocities of 1 m/s and 3 m/s. It has been observed that removal efficiency is higher in case of higher inlet air velocity.

Numerical Simulation for Atomization of Liquid Jet in Venturi Scrubber (벤츄리 스크러버 내의 액체 분사 미립화에 대한 수치적 해석)

  • Pak S. I.;Chang K. S.;Moon Y. W.;Sah J. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.37-41
    • /
    • 2004
  • Liquid injection in a Venturi Scrubber creates great effect on the dust-collection efficiency and operation cost of venturi scrubbers. We have developed a model that can numerically simulate atomization of the liquid jet in the Venturi Scrubber. This simulation consists of models on liquid column, jet surface breakup, column fracture and secondary droplet breakup. These models have been embedded in the KIVA3-V code. We have calculated such parameters as the jet penetration, jet trajectory, droplet size, velocity field and the volume flux distribution. The results are compared with the experimental data in this paper.

  • PDF

The Evaluation of Dynamic Load for the Cone Type Venturi Flow meter (원추형 벤튜리 유량계에 관한 동하중 평가)

  • 김중권;장경영;조남오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.140-144
    • /
    • 1997
  • Although the cone type venturi flow meter is superior to another differential pressure type flow meter in precision, the venturi is installed at the pipe as an L beam, so that the dynamic load due to drag force and flow-induced force is generated in the flow meter. In this paper we propose a methodology to evaluate this dynamic load directly by using stain-gages attached on the venturi and we discuss about the dynamic characteristics on the basis of flow-induced vibration theory.

  • PDF