• Title/Summary/Keyword: Ventricular Unloading

Search Result 3, Processing Time 0.016 seconds

Application of Cardiac Electromechanical FE Model for Predicting Pumping Efficacy of LVAD According to Heart Failure Severity (심부전 정도에 따른 좌심실보조장치의 박동효율예측을 위한 심장의 전기역학적 유한요소 모델의 응용)

  • Jung, Dae Hyun;Lim, Ki Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.715-720
    • /
    • 2014
  • In order to maximize the effect of left ventricular assist device (LVAD) on ventricular unloading, the therapy should be begun at appropriate level of heart failure severity. We predicted pumping efficacy of LVAD according to the severity of heart failure theoretically. We used 3 dimensional finite element model of ventricle coupled with 6 Wind-kessel compartmental model of vascular system. Using the computational model, we predicted cardiac responses such as contractile ATP consumption of ventricle, left ventricular pressure, cardiac output, ejection fraction, and stroke work according to the severity of ventricular systolic dysfunction under the treatments of continuous LVAD. Contractile ATP consumption, which indicates the ventricular energetic loading condition decreased maximally at the $5^{th}$ level heart-failure under LVAD therapy. We conclude that optimal timing for LVAD treatment is $5^{th}$ level heart-failure when considering LVAD treatment as "bridge to recovery".

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

An Animal Study on Electrohydraulic Type Ventricular Assist Device (전기 유압식 심실보조장치의 동물실험 연구)

  • 백완기;심상석
    • Journal of Chest Surgery
    • /
    • v.29 no.7
    • /
    • pp.689-699
    • /
    • 1996
  • An animal experiment was designed for the evaluation of in vivo performance of the newly developed electrohydraulic type ventricular assist device and its influence on the left ventricular function during pal- satile left ventricular assist. Eight adult sheep were incorporated into the study and data were collected from seven sheep. Total as- sist time ranged from 69 minutes to 7 days. The performance of the device was satisfactory both in asyn- chr nous and synchronous mode within the range of given native heart rate. More than 4 liters of device output could be reached within the range of normal left atral pressure without development of negative pressure in the left atrium. Moderate to severe degree of hemolysis was noted as evidenced by significant increase of plasma free hemoglobin level after 3 days of left ventricular support along with the presence of the small amount of thrombi around the floating disc type polymer valve apparatus reflecting that further study and refinement of the device need to be done in regard of biocompatibility and thromboresistance. The hemodynamics showed increase in heart rate (p < 0.05), cardiac output and left ventricular minute work (p < 0.05) after placement of the device at the flow rate of 2.0∼2.5 Llmin. The left atrial pressure, left ventricular pressure and LV dpldt were decreased after the device placement(p < 0.05). The endocardial viability ratio and oxygen contents of the mixed ven us blood and coronary venous blood were all increased (p < 0.05) after the device placement suggesting effective unloading of the left ventricle was accomplished. The myocardial perfusion was thought improved in synchronous counterpulsation as suggested by sig- nificant increase in endocardial viability ratio and coronary venous blood oxygen content in synchronous assist mode comparing with asynchronous mode.

  • PDF