• 제목/요약/키워드: Ventilation simulation

검색결과 383건 처리시간 0.024초

터널내 열차 화재시 효과적인 구난역 제연 설비를 위한 수치 해석 연구 (A Numerical Study on Effective Smoke-Control System of a Rescue Station in a Tunnel Fire)

  • 양성진;원찬식;허남건;차철현
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.575-578
    • /
    • 2006
  • In designing smoke-control system of rescue station in train tunnel, a purpose is to prevent a disaster by proposing the jet fan operation together with smoke-control curtain in tunnel fire. This study has investigated the relationship of the Heat Release Rate(HRR) and a adequate ventilation velocity to control the fire propagation in tunnel fire, and has improved the effect of the smoke-control curtain on preventing the flow of pollutants. In this study, Computational Fluid Dynamics(CFD) simulations with ST AR-CD(ver 3.24) were carried out on predicting the fire spreading and the flow of pollutants, considering jet fan operations and effect of smoke-control curtain. Our simulation domain is the full scale model of the 'DAEGWALLYEONG' 1st tunnel. The results represent that ventilation operation can control the fire spreading and pollutants effectively to prevent a disaster.

  • PDF

철도터널의 환기특성에 관한 연구 (The Characteristics of Ventilation in Railway Tunnel)

  • 유지오;신현준;이호석
    • 한국터널지하공간학회 논문집
    • /
    • 제2권2호
    • /
    • pp.22-31
    • /
    • 2000
  • 철도터널에서 오염물질의 거동은 열차의 운행조건 및 터널의 구조 등과 같은 다양한 인자에 의해 영향을 받아 매우 복잡한 양상을 보이게 된다. 본 연구에서는 SES프로그램을 수정하여 해석한 농도계산을 이용하여 철도터널에서 오염물질의 거동특성을 구명하고, 터널의 단면적, 길이 및 열차의 항력계수, 주행속도가 터널의 최대풍속 및 오염농도에 미치는 영향에 대한 분석결과를 제시하였다.

  • PDF

하계 공동주택 하이브리드 환기시스템 적용에 따른 실내공기 및 열 환경 평가 (Analysis of Indoor Air & thermal environment with Hybrid Ventilation system during summer)

  • 김상진;김은수;김태연;이승복
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.387-392
    • /
    • 2006
  • The recent on indoor air problem has led to many studies on the methods and effects of ventilation for better indoor air quality. Although natural ventilation is the most effective and energy-saving method in residental housings, the small size of openable window has been a problem in high-rise residential buildings to ventilate only through natural ventilation. Consequently, the installation of mechanical ventilation system has been a requirement in residential buildings, and has caused other problems such as increase of energy consumption and SBS. Hybrid ventilation which uses forces of both natural and mechanical power has been introduced to solve the problem of increase in energy consumption with natural ventilation. In this paper, two types of hybrid ventilation systems in residential building were introduced. One type was with natural ventilation through vent grille in the window, and another type was with natural ventilation through ceiling duct while both types used mechanical ventilation system with the outlets. The indoor temperature distribution and pollution density distribution in summer while operating the ceiling air conditioner were analyzed through CFD simulation. In this paper, the optimal location of diffusers to achieve thermal comfort would be proposed.

  • PDF

냉동 물류 창고 내 도크시스템을 통한 에너지 손실량 분석 (Analysis of Amount of Energy Loss for a Dock System in the Cold Distribution Center)

  • 양성준;김영주;허준;김태성
    • 설비공학논문집
    • /
    • 제29권8호
    • /
    • pp.419-428
    • /
    • 2017
  • In this study, energy loss due to ventilation load in the dock system was analyzed through simulation. Also, flow generated in the dock system of the warehouse was measured using manufactured measuring devices. Numerical simulation was conducted by simulating the most common picking tasks by examining the actual working environment. Incompressible and unsteady turbulent flows were assumed, and the turbulence model was the k-e standard model. Proper grid was selected through grid dependency test. Measurement was conducted using Honeywell and Vaisala sensors, and flow and temperature inside the warehouse were measured and compared with simulation results to validate simulation. When comparing amount of loss occurring in two hours and amount of loss occurring in 15 minutes, docking time of the former was eight times longer but energy loss was 3.8 times lower. Ventilation load occurring during the initial period after opening docking system accounted for a large proportion of total ventilation load. Also, comparing the load when the dock was closed and the load when the truck was parked, ventilation load was significantly higher than load due to heat conduction from the wall. Therefore, in improving the docking system, it is effective to reduce the gap by improving compatibility of the docking system and truck, rather than wall material.

패시브환기외피의 단면온도분포 및 열회수량에 관한 수치해석적 연구 (A Numerical Study on Sectional Temperature Distribution and Heat Recovery Amount of Passive Ventilation Skin)

  • 이태철;손유남;윤성환
    • 설비공학논문집
    • /
    • 제24권10호
    • /
    • pp.705-710
    • /
    • 2012
  • This study aims to analyse changes of inner temperature of PVS(Passive ventilation skin) and heat recovery when it has ventilation of air through PVS using numerical simulation in the winter condition. Results are as follows. 1) In case of the air inflows through PVS, change of inner temperature of PVS is lower than in case of the air flows inner space to out space, by dynamic insulation. 2) It was identified that the temperature gradient of PVS were bigger by increases of ventilation amount. To reduce ventilation load, heat transfer efficiency at the inner side of PVS is important and what performance of insulation at the inner side of PVS secure helps to improve heat performance of all PVS.

아트리움을 이용한 자연환기 활성화 방안에 관한 사례 연구 (An Application Study on a Strategy to Promote Natural Ventilation at an Atrium Building)

  • 신선준;이승연;조진균;한수곤;홍민호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.540-545
    • /
    • 2008
  • An atrium has great potential in natural ventilation aided by buoyance effect. Architectural design of an atrium is very critical to maximize the effect. However, it is not easy of an atrium to have optimum shape for natural ventilation, from the aesthetic and economic point of view. Admitting this condition, we suggested a strategy to promote natural ventilation, which can be adopted only with small design change. At first, we installed BIPV on the top of an atrium to strengthen buoyancy effect, and combine forced ventilation by low pressure fan. To evaluate the performance of the measure, CFD simulation and Energy-Airflow analysis were achieved.

  • PDF

대구지역의 국지적 대기순환풍의 환기경로에 관한 수치모의 실험 (Numerical Simulation Experiment on the Wind Ventilation Lane of the Local Circulation Winds in Daegu)

  • 구현숙;김해동;강성대
    • 한국환경과학회지
    • /
    • 제13권4호
    • /
    • pp.367-376
    • /
    • 2004
  • In urban area, thermal pollution associated with heat island phenomena is generally regarded to make urban life uncomfortable. To overcome this urban thermal pollution problem, urban planning with consideration of urban climate, represented by the concept of urban ventilation lane, is widely practiced in many countries. In this study, the prevailing wind ventilation lane of a local winds in Daegu during the warm climate season was investigated by using surface wind data and RAMS(Reasonal Atmospheric Model System) simulation. The domain of interest is the vicinity of Daegu metropolitan city(about 900 $km^{2})$ and its horizontal scale is about 30km. The simulations were conducted under the synoptic condition of late spring with the weak gradient wind and mostly clear sky. From the numerical simulations, the following two major conclusions were obtained: (1)The major wind passages of the local circulation wind generated by radiative cooling over the mountains(Mt. Palgong and Mt. Ap) are found. The winds blow down along the valley axis over the eastern part of the Daegu area as a gravity flow during nighttime. (2)After that time, the winds blow toward the western part of Daegu through the city center. As the result, the higher temperature region appears over the western part of Daegu metropolitan area.

공동주택 강제 환기 시스템의 건물에너지 측면에서의 장기적 운영 방안에 관한 연구 (A Study on the Long-term Operating plan of Ventilation System of Apartment House in terms of Energy Performance)

  • 김승철;윤종호;백남춘;신우철
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.115-123
    • /
    • 2011
  • Because buildings recently built have been highly insulated and highly airtight, it is impossible to emit toxic substances from interior finishing materials only by natural ventilation. Therefore, they cause indoor air pollution and it may threaten the user"s health such as atopic dermatitis, bronchial asthma and (allergic) rhinitis. Domestically, users spend indoors 80 percent of their time of a day. With the increased interest in indoor air quality, the introduction of forced ventilation system for new-built apartment buildings has been legislated. However, toxic substances from indoor are mostly below there commended standard approximately 23 months later. Thus, this study has assumed the status of the apartment buildings 23 months later through a simulation, regarded $CO_2$ as an exclusive indoor air pollution source. In the process of effectively eliminating the $CO_2$, this study has also been conducted on an operating plan that can provide superior performance from the energy side.

  • PDF

철도터널 화재시 연결통로 및 대피로 제연을 위한 수치해석 연구 (Numerical Simulation of Smoke Ventilation in Rescue Route and Cross Passage of Railroad Tunnel)

  • 양성진;허남건;유홍선;김동현;장용준
    • 설비공학논문집
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2008
  • A transient 3-D numerical simulation was performed to analyze the fire safety in a railway tunnel equipped with a mechanical ventilation system. The behavior of pollutants was studied for the emergency operation mode of ventilation system in case of fire in the center of the rescue station and near the escape route. Various schemes of escape route construction for connection angle($45^{\circ}$, $90^{\circ}$, 135^{\circ}$) and slope($10^{\circ}$) were evaluated for the ventilation efficiency in the fire near the escape route. From the results, it was shown that the mode of the ventilation fan operation which pressurizes the tunnel not under the fire and ventilates the smoke from the tunnel under the fire is most effective for the smoke control in the tunnel in case of the fire occurrence. It was also shown that the blowing of jet fan from the rescue tunnel to the main tunnel should be in the same direction as the flow direction in the main tunnel arising from the traffic and the buoyancy.

환기가 있는 터널에서의 화재유동 해석의 정확성에 대한 고찰 (THE EXAMINATION OF ACCURACY OF FIRE-DRIVEN FLOW SIMULATION IN TUNNEL EQUIPPED WITH VENTILATION)

  • 장용준;이창현;김학범;정우성
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.115-122
    • /
    • 2009
  • Numerical methods are applied to simulate the smoke behavior in a ventilated tunnel using large eddy simulation (LES) which is incorporated in FDS (Fire Dynamics Simulator) with proper combustion and radiation model. In this study, present numerical results are compared with data obtained from experiments on pool fires in a ventilated tunnel. The model tunnel is $182m(L){\times}5.4m(W){\times}2.4m(H)$. Two fire scenarios with different ventilation rates are considered with two different fire strengths. The present results are analyzed with those from LES without combustion and radiation model and from RANS ($\kappa-\epsilon$) model as well. Temperature distributions caused by fire in tunnel are compared with each other. It is found that thermal stratification and smoke back-layer can be predicted by FDS and the temperature predictions by FDS show better results than LES without combustion and radiation model. The FDS solver, however, failed to predict correct flow pattern when the high ventilation rate is considered in tunnel because of the defects in the tunnel-inlet turbulence and the near-wall turbulence.