• Title/Summary/Keyword: Ventilation duct

Search Result 130, Processing Time 0.022 seconds

Balancing air flow at terminal in CAV duct system with DPM method (정풍량방식 덕트에서 이중압력측정방법을 이용한 취출구 풍량조정)

  • 이대우;박명식;박영우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.66-78
    • /
    • 1998
  • Adequate ventilation with the proper amount of air to the right place is important factor to achieve a good Indoor air climate. Thus it is of prime importance that the ventilation system is working properly. This requires reliable pressure loss calculation to balance the air flow through duct systems. So a computer program for balancing CAV duct system is developed In this study. The results of CAV duct system is compared with the "Balans" code developed by Larsen from Norway. To obtain the pressure drop characteristics of damper at duct terminal, some experiments are performed using DPM(Dual Pressure Measurement) system. To adjust the resistance of damper, present study suggests that some special diffusers should be designed and damper producers should give the data of air flow vs. pressure drop to the customs when they manufacture the damper. One of the results concludes that the working time can be reduced from several minutes to several seconds per damper in the present experimental site, if the DPM system and the air volume adjusting process are used.

  • PDF

A Study on the Performance of the Hybrid Ventilation System for Apartment Houses (공동주택의 하이브리드 환기시스템 성능평가 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sang-Hee
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.89-96
    • /
    • 2012
  • The purpose of this study was to evaluate the applicability of hybrid ventilation system in apartment housings and present a design method to improve the performance of hybrid ventilation system using the CFD simulation. As the object of CFD simulation, a small apartment houses with area of $51m^2$ and $81m^2$ were selected and evaluated. The test hybrid ventilation system are window frame natural air supply & duct exhaust hybrid system(Hybrid 1) and window frame natural air supply & bathroom and livingroom exhaust hybrid ventilation system(Hybrid 2). To evaluate the ventilation efficiency, we used the locations of diffuser installed for each system as the variables through the CFD simulation. In the case of Hybrid 1, the ventilation efficiency of the exhaust duct diffuser located on the inside room was higher rather than the exhaust duct diffuser located on the entrance. In the case of Hybrid 2, the most efficient system was the system that the diffuser connecting the bathroom static pressure fan is installed on the center of the living room. The ventilation efficiency of the Hybrid 2 in the case of $51m^2$ type was more than 20% of the Hybrid 1. But, The ventilation efficiency of the Hybrid 2 in the case of $84m^2$ type was more than 14% of the Hybrid 1. Therefore, to apply the Hybrid ventilation, a study that considers various variable should be conducted.

Measurements of Ventilation Effectiveness in an Underfloor Air-Conditioned Space Using a Tracer Gas Technique

  • Han, Hwa-Taik;Seo, S.Y.;Kim, M.H.;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.7
    • /
    • pp.91-100
    • /
    • 1999
  • This paper investigates ventilation characteristics of an environmental chamber simulating an under-floor air conditioning system for isothermal and cooling supply air conditions. The tracer gas sulfur-hexafluoride (SF$F_6$) was injected into a supply duct using step-up and step-down methods. Local mean and room mean ages were calculated from the concentrations measured at internal points and at the exhaust duct. The air change efficiency of the chamber has been found to be greater in cooling conditions than in isothermal conditions. Also the room air change efficiency is not significantly affected but slightly improved by the presence of a supply diffuser.

  • PDF

Numerical Analysis on Hood Shape Improvement of Local Ventilation System (국소환기시스템의 후드형상 개선에 따른 수치해석)

  • Yi, Chung-Seub;Jang, Sung-Cheol;Choi, Joo-Hong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.4
    • /
    • pp.260-265
    • /
    • 2009
  • The aim of this study is to remove crack on a ventilation device at the suction part of zinc plating factory, and the main point is making optimum configuration by improving an existing hood system. The result shows that existing hood system has problem with duct configuration, angle and reducer. Model-5 shows lowest pressure difference as meaning of suction capability. The hood inlet surface has most uniform suction capability.

A study on the program development for optimizing the supply and exhaust port opening ratio in road tunnels with transverse ventilation system (횡류식 도로터널의 급배기구 개도율 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.517-532
    • /
    • 2017
  • The transverse ventilation system, commonly applied to urban tunnel, is necessary to be distributed with airflow uniformly. In this study, we developed a program that can optimize the opening ratio of ports to ensure ventilation performance of design criteria through a uniform airflow distribution even though ventilation interval becomes longer. And program's prediction performance was verified by comparison with TUNVEN DUCT program. For comparison, Semi-transverse ventilation system was applied. Both programs predicted a similar port size and air flow distribution, and the variation range of the calculated values was 11.71% and 1.36%, respectively. This program is very useful for port optimization design of transverse and semi-transverse ventilation system, because it is possible to analyze various tunnel lengths and supply/exhaust port installation conditions.

Heat Transfer Performance of the Duct with Various Cross Section in Heat Exchanger (단면형상 변화에 따른 전열교환기 열전달 특성변화에 대한 연구)

  • Kim, Eung-Bok;Han, Min-Sub;Kim, Nae-Hyun;Won, Tae-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.5
    • /
    • pp.322-327
    • /
    • 2010
  • It is a critical task to keep the ventilation system working in a proper and efficient manner in large multi-storey buildings, and the enthalpy exchanger is becoming an increasingly important part of the ventilation system by playing the function of channeling heat and moisture. We present a computational study on the heat transfer performance of the cross-flow enthalpy exchanger, which is in large use for residential buildings. The ducts are considered whose cross-sectional shapes resemble triangle and longitudinal centerline a cosine wave. It is shown that, as the cross-sectional shape departs from triangle, the heat transfer performance of the duct tends to deteriorate. Also, applying the wave-like shape to the longitudinal centerline of the duct increases the rate of heat transfer and the applied pressure-gradient at the same time. The origin of the performance variations in the cases considered are quantitatively analyzed and discussed.

A study on the development and performance evaluation of duct coupling for the minimized leakage of temporary ventilation duct (공사 중 환기덕트 누풍 최소화를 위한 접속부 개발 및 성능평가 연구)

  • Jo, Hyeong-Je;Jun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.145-160
    • /
    • 2018
  • Long subsea tunnel is subject to many restrictions in terms of spatial limitation when vertical or inclined shafts are built for tunnel ventilation. So, the construction of some artificial island is required to provide ventilation. But, because of construction difficulty and cost increase, it is necessary to minimize the artificial island construction. As a result, ventilation distance become longer and supply airflow becomes excessive due to air leakage, So, duct mounting for temporary ventilation is impossible or fan pressure and power increase exponentially. Therefore, in order to build a long subsea tunnel, it is necessary to overcome these practical problems and to develop technical solution that can keep the comfortable condition of tunnel environment during construction. In previous study, we have found that air leakage is the key factor in solving these problems and experimental results show that the new connection method has a leakage rate of about $1.46mm^2/m^2$ (Jo et al., 2017). In this study, we present the experimental results of the measurement of the leakage rate of the prototype with the new connection method, and analyze experimentally the improvement of the leakage rate when applying the flexible cover inside the duct to improve the leakage performance of the existing connection method.

Analysis of Air Flow Rate Distribution for the Bathroom Exhaust System in High-rise Buildings Using T-method (T-method를 이용한 고층 아파트 욕실 배기 시스템의 층별 유량분배 해석)

  • 문종선;강석윤;이승철;유호선;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.3
    • /
    • pp.265-272
    • /
    • 2004
  • Based on the T-method, a new scheme for predicting air flow rate distribution in a bathroom exhaust system is developed. Introduction of individual duct route enables us to disintegrate a complicated multi-fan ductwork into a set of simultaneous single-fan subsystems. The scheme is validated via the analysis of a well-posed test problem, showing physical consistency. In order to demonstrate the utility and capability of our method, the bathroom ventilation system in a 20-story residential building is selected as an example. Under the typical design condition, the air flow rate of each exhaust fan at the balancing point is successfully predicted, and such information can lead to an engineering estimation for the overall system performance. While some deficiencies in ventilation are found at bathrooms at lower floors with 6mmAq-rated exhaust fans, they disappear over the whole building by using fans of enhanced static pressures, 7 and 8mmAq. Finally the present scheme seems to be useful for practical design of multi-branched, multi-fan ventilation systems.

Effects of Ventilation Types on Interior Environment of the Enclosed Farrowing-Nursery Pig House (무창 분만 ${\cdot}$ 자돈사 환기 형태가 돈사내 환경에 미치는 영향)

  • Yoo, Y.H.;Song, J.I.;Kang, H.S.;Jeon, B.S.;Kim, T.I.;Kim, H.H.
    • Journal of Animal Environmental Science
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • This study was conducted to collect basic data about the effects of ventilation types on the interior environment of the enclosed farrowing-nursery pig house in Anseong, Icheon and Jeungpyong. Surveyed ventilation types in the enclosed farrowing-nursery pig house are classified in to 4 types. In V1 type, air enters through a planar slot inlet placed on the juncture of the entering wall and exit through the chimney fan outlet; in V2 type, air enters through a perforated ceiling inlet and exits chimney fan outlet(V2); in V3 type, air enters through a circular duct inlet and exit chimney fan outlet(V3); in V4 type, enters through a circular duct inlet and exits side wall exhaust fan outlet(V4). Temperature, relative humidity, air velocity and ammonia concentration($NH_3$) were measured in the interior of swine building in the summer. Interior temperature was not remarkably different in all ventilation types in this study. However, temperature of the V4 was somewhat lower than that of the other types. Air velocity of the V4 was higher and $NH_3$ concentration of the V4 was lower than those of other ventilation types. It is suggested that the V4 ventilation type be applicable in the enclosed farrowing-nursery pig house in Korea.

  • PDF

Performance Evaluation of Window Ventilation System for Reducing Indoor particulate matter (실내 미세먼지 저감을 위한 창호형 환기시스템 성능평가)

  • Yang, Young Kwon;Park, Jin Chul
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • Indoor particulate matter(PM) is a carcinogen and needs to be removed and managed. It is generally reduced and removed through ventilation and filtration. Owing to the recent occurrence of high-concentration fine dust and yellow dust in the atmosphere, however, it is difficult to expect the purification of indoor air through the simple introduction of the outside air. For residential buildings, in particular, they are highly dependent on natural ventilation but the lack of natural ventilation is worsening because concerns over the inflow of external pollutants are increasing. Therefore, this study designed and manufactured a window ventilation system that does not require a duct to improve the maintenance and management problems of general ventilation system, and constructed indoor PM concentration change data through performance evaluation.