• Title/Summary/Keyword: Ventilation by vehicle

Search Result 86, Processing Time 0.026 seconds

Multi-objective robust optimization method for the modified epoxy resin sheet molding compounds of the impeller

  • Qu, Xiaozhang;Liu, Guiping;Duan, Shuyong;Yang, Jichu
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.179-190
    • /
    • 2016
  • A kind of modified epoxy resin sheet molding compounds of the impeller has been designed. Through the test, the non-metal impeller has a better environmental aging performance, but must do the waterproof processing design. In order to improve the stability of the impeller vibration design, the influence of uncertainty factors is considered, and a multi-objective robust optimization method is proposed to reduce the weight of the impeller. Firstly, based on the fluid-structure interaction, the analysis model of the impeller vibration is constructed. Secondly, the optimal approximate model of the impeller is constructed by using the Latin hypercube and radial basis function, and the fitting and optimization accuracy of the approximate model is improved by increasing the sample points. Finally, the micro multi-objective genetic algorithm is applied to the robust optimization of approximate model, and the Monte Carlo simulation and Sobol sampling techniques are used for reliability analysis. By comparing the results of the deterministic, different sigma levels and different materials, the multi-objective optimization of the SMC molding impeller can meet the requirements of engineering stability and lightweight. And the effectiveness of the proposed multi-objective robust optimization method is verified by the error analysis. After the SMC molding and the robust optimization of the impeller, the optimized rate reached 42.5%, which greatly improved the economic benefit, and greatly reduce the vibration of the ventilation system.

Design of Fire Source for Railway Vehicles and Measurement of Critical Velocity in Reduced-Scale Tunnels (축소터널 철도차량 화원 설계 및 임계속도 측정연구)

  • Park, Won-Hee;Hwang, Sun-Woo;Kim, Chang-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.59-68
    • /
    • 2020
  • In this study, the authors designed a reduced-scale railway vehicle fire, which was necessary for evaluating the fire safety of railway tunnels using a reduced model. To overcome the shortcomings of the methods used in conventional reduced-scale railway tunnel tests, the authors simulated the fire source of a railway vehicle using a methanol fire source for fire buoyancy, and a smoke cartridge for smoke visualization. Therefore, the heat release mass consumption rates of various methane trays were measured using a cone calorimeter (ISO 5660). The critical ventilation velocity in the railway tunnels was obtained using the designed fire source of the railway vehicle, which was evaluated by the measured temperature at the top of the tunnel as well as laser visualization.

Intelligent AQS System with Artificial Neural Network Algorithm and ATmega128 Chip in Automobile (신경회로망 알고리즘과 ATmega128칩을 활용한 자동차용 지능형 AQS 시스템)

  • Chung Wan-Young;Lee Seung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.539-546
    • /
    • 2006
  • The Air Quality Sensor(AQS), located near the fresh air inlet, serves to reduce the amount of pollution entering the vehicle cabin through the HVAC(heating, ventilating, and air conditioning) system by sending a signal to close the fresh air inlet door/ventilation flap when the vehicle enters a high pollution area. The sensor module which includes two independent sensing elements for responding to diesel and gasoline exhaust gases, and temperature sensor and humidity sensor was designed for intelligent AQS in automobile. With this sensor module, AVR microcontroller was designed with back propagation neural network to a powerful gas/vapor pattern recognition when the motor vehicles pass a pollution area. Momentum back propagation algorithm was used in this study instead of normal backpropagation to reduce the teaming time of neural network. The signal from neural network was modified to control the inlet of automobile and display the result or alarm the situation in this study. One chip microcontroller, ATmega 128L(ATmega Ltd., USA) was used for the control and display. And our developed system can intelligently reduce the malfunction of AQS from the dampness of air or dense fog with the backpropagation neural network and the input sensor module with four sensing elements such as reducing gas sensing element, oxidizing gas sensing element, temperature sensing element and humidity sensing element.

Evaluation of Recursive PIV Algorithm with Correlation Based Correction Method Using Various Flow Images

  • Daichin;Lee, Sang-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.409-421
    • /
    • 2003
  • The hierarchical recursive local-correlation PIV algorithm with CBC (correlation based correction) method was employed to increase the spatial resolution of PIV results and to reduce error vectors. The performance of this new PIV algorithm was tested using synthetic images, PIV standard images of Visualization Society of Japan, real flows including ventilation flow inside a vehicle passenger compartment and wake behind a circular cylinder with riblet surface. As a result, most spurious vectors were suppressed by employing the CBC method, the hierarchical recursive correlation algorithm improved the sub-pixel accuracy of PIV results by decreasing the interrogation window size and Increased spatial resolution significantly. However, with recursively decreasing of interrogation window size, the SNR (signal-to-noise ratio) in the correlation plane was decreased and number of spurious vectors was increased. Therefore, compromised determination of optimal interrogation window size is required for given flow images, the performance of recursive algorithm is also discussed from a viewpoint of recovery ratio and error ratio in the paper.

Development of a Recursive Local-Correlation PIV Algorithm and Its Performance Test

  • Daichin Daichin;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.75-85
    • /
    • 2001
  • The hierarchic recursive local-correlation PIV algorithm with CBC(correlation based correction) method was developed to increase the spatial resolution of PIV results and to reduce error vectors. This new algorithm was applied to the single-frame and double-frame cross-correlation PIV techniques. In order to evaluate its performance, the recursive algorithm was tested using synthetic images, PIV standard images from Visualization Society of Japan, real flows including ventilation flow inside a vehicle passenger compartment and wake behind a circular cylinder with rib let surface. As a result, most spurious vectors were suppressed by employing CBC method. In addition, the hierarchical recursive correlation algorithm improved largely the sub-pixel accuracy of PIV results by decreasing the interrogation window size, increasing spatial resolution significantly.

  • PDF

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

A Survey on Riding Characteristics and Helmet Wearing Conditions of Bicycle and PMV(Personal Mobility Vehicle) Riders (자전거 및 PMV(Personal Mobility Vehicle) 사용자의 주행 특성 및 헬멧 착용 실태 조사)

  • Kim, In Hwa;Choi, Kueng Mi;Jun, Jung Il
    • Fashion & Textile Research Journal
    • /
    • v.20 no.1
    • /
    • pp.63-74
    • /
    • 2018
  • The purpose of this study is to investigate the differences in riding characteristics and helmet wearing conditions between bicycle and PMV riders so that the basis data necessary for the development of suitable helmets for each group is provided. For this purpose, riding characteristics and helmet wearing conditions of bicycle and PMV users were investigated using online survey method and then the survey results were interpreted by in-depth interview conducted for bicycle and PMV users. The online survey results showed that the PMV group showed shorter driving distance and more driving frequency than bicycle group. This short driving distance was due to the limitation of battery capacity of PMVs. Helmet wearing rate was significantly lower in PMV group than in bicycle group, which was associated with relatively low chances to drive long distance on the motorway. In the PMV group, the 'urban helmets' were mainly used, in which the appearance of helmet was priorized, but in the bicycle group, the 'road cycle helmets' were mainly used, in which the light weight or ventilation were priorized. Urban helmets caused stronger pain and more fitting problems than road cycle helmets because the head shapes of Koreans were not properly applied to the helmet design. Since the fitting problem and pain intensity were the important causes that making PMV users not wear the helmets, it is necessary to develop the urban helmets reflecting the head shapes of Koreans in order to increase the helmet wearing rate of the PMV users.

A Model-Analysis for Removal of Fire Fumes in a Road Tunnel during a Fire Disaster (도로터널내 화재 발생시 매연 제거를 위한 모델 해석)

  • 윤성욱;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.100-107
    • /
    • 1997
  • In case of a fire outbreak in a uni-directional road tunnel, the flow of traffic immediately behind the fire disaster will be stalled all the way back to the entrance of the tunnel. Furthermore, when the vehicle passengers try to flee away from the fire toward the entrance of the tunnel, the extremely hot fume that propagates in the same direction will be fatal to the multitudes evacuating, but may also cause damage to the ventilation equipments and the vehicles, compounding the evacuation process. This paper will present the 3-dimensional modelling analysis of the preventive measures of such a fume propagation in the same direction as the evacuating passengers. For the analysis, the fire hazard was assumed to be a perfect combustion of methane gas injected through the 1 m X 2 m nozzle in the middle of the tunnel, and the product of $CO_2$ as the indicator of the fume propagation. From the research results, when the fire hazard occurred in middle of the 400 m road tunnel, the air density decreased around the fire point, and the maximum temperatures were 996 K and 499 K at 210 m and 350 m locations, respectively, 60 seconds after fire disaster occurred, when the fumes were driven out only towards the exit-direction of the tunnel. By tracing the increase of $CO_2$ level over 1% mole fraction, the minimum longitudinal ventilation velocity was found to be 2.40 m/sec. Furthermore, through Analysis of the temperature distribution graphs, and observation of the cross-sectional distribution of $CO_2$ over 1% mole fraction, it was found that the fume did not mix with the air, but rather moved far in a laminar flow towards exit of the tunnel.

  • PDF

Analysis of Dynamic Characteristics of Pneumatic Driving Solenoid Valve (공압구동용 솔레노이드밸브의 동특성 해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.731-736
    • /
    • 2011
  • A pneumatic driving solenoid valve operates pneumatic control devices by opening/closing operating flow passage when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of pneumatic driving solenoid valve is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of their operating durations of valve by AMESim analysis are compared with the results of experiments. In addition, the results of internal flow simulation with FLUENT are utilized to improve the accuracy of valve-modeling. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors; shape of control valve seat, drainage seat, rate of sealing diameter, volume of control cavity. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditions, which shall be used in Korea Space Launch Vehicle-II.

  • PDF

Analysis of Dynamic Characteristics and Performance of Solenoid Valve for Pressurization Propellant Tank (추진제탱크 가압용 솔레노이드밸브의 작동특성 분석 및 해석)

  • Jang, Je-Sun;Kim, Byung-Hun;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.725-730
    • /
    • 2011
  • A 2-way solenoid valve regulates to maintain the pressure of ullage volume of propellant tanks when the command is given by control system for the liquid-propellant feeding system of space launch vehicle. The simulation model of solenoid valve for pressurization is designed with AMESim to verify the designs and evaluate the dynamic characteristics and pneumatic behaviors of valve. To validate a valve simulation model, the simulation results of their operating durations of valve by AMESim analysis are compared with the results of experiments. Using the model, we analyze performance of valve; opening/closing pressure, operating time on various design factors; shape of control valve seat, basic valve seat, rate of sealing diameter. This study will serve as one of reference guides to enhance the developmental efficiency of ventilation-relief valves with the various operating conditions, which shall be used in Korea Space Launch Vehicle-II.

  • PDF