• 제목/요약/키워드: Ventilation by vehicle

검색결과 86건 처리시간 0.032초

분사형 초공동 수중운동체의 가스 분사량 제어 연구 (Studies on Ventilation Control for a Ventilated Supercavitating Vehicle)

  • 김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제52권3호
    • /
    • pp.206-221
    • /
    • 2015
  • Supercavitation is a modern technique which can be used to surround an underwater vehicle with a bubble in order to reduce the resistance of the vehicle. When the vehicle is at low speed in the deep sea, the cavitation number is relatively big and it is difficult to generate a cavity large enough to envelope the vehicle. In this condition, the artificial cavity, called ventilated cavity, can be used to solve this problem by supplying gas into the cavity and can maintain supercavitating condition. In this paper, a relationship between the ventilation gas supply rate and the cavity shape is determined. Based on the relationship a ventilation rate control is developed to maintain the supercavitating state. The performance of the ventilation control is verified with a depth change control. In addition, dynamics modeling for the supercavitating vehicle is performed by defining forces and moments acting on the vehicle body in contact with water. Simulation results show that the ventilation control can maintain the supercavity of an underwater vehicle at low speed in the deep sea.

도로터널 환기관련 연구동향 (Worldwide Trends in the Research Topics for the Vehicle Tunnel Ventilation)

  • 이창우
    • 터널과지하공간
    • /
    • 제12권3호
    • /
    • pp.152-157
    • /
    • 2002
  • 협소한 국토의 효율적 개발을 위하여 필수적인 장대터널의 확충은 사회, 경제, 환경, 기술적 환경의 변화에 따라 최적 설계가 점차 어려워지고 있다. 특히 관련 기초분야 연구가 극히 미흡한 국내 사정을 감안할 경우, 장대터널 설계 및 운영에 필요한 요소기술의 개발은 시급한 과제가 아닐 수 없다. 본 논문에서는 터널 환기에 관련된 유일한 국제 심포지움인 International Symposium on Aerodynamic and Ventilation of vehicle Tunnels에 1990년대 이후 발표된 연구분야 분석을 통하여 국내 연구가 반드시 필요한 과제의 제시를 목적으로 하였다.

공기질 조절장치 작동 승용차 내부의 공기질 평가 (Evaluation of Air Quality Inside Passenger Car with Operating Air Quality System)

  • 조완근;박건호
    • 한국환경과학회지
    • /
    • 제7권5호
    • /
    • pp.573-580
    • /
    • 1998
  • This study examined the carbon dioxide ($CO_2$) pollution inside vehicles under low ventilation condition and evaluated the Air Quality System (AQS) for in-vehicle air quality using two techniques. The low ventilation condition is not recommended in order to keep oxygen-rich condition inside vehicles. Under the low ventilation condition, the in-vehicle $CO_2$ concentrations exceeded 1,000 ppm, the air qualify guidelines in the United States, Western Europe, and Japan, indicating more oxygen deficiency inside vehicles. On the contrary, with the AQS-on condition, the in-vehicle $CO_2$ concentrations were less than 1,000 ppm fer most of the driving time, indicating that the AQS could solve the problem of $CO_2$ accumulation inside vehicles under the low ventilation condition. The AQS test conducted by comparing carbon monoxide (CO) and volatile organic compound (VOC) concentrations inside two vehicles indicated that the AQS effectively decreased the in-vehicle concentrations by 21 to 36%, as compared to medium ventilation condition with the windows closed, the vent opened, and air conditioning on. In addition, The AQS test conducted by comparing the interior and exterior concentrations indicated that the AQS effectively decreased the in-vehicle concentrations by 18 to 31%, as compared to medium ventilation condition.

  • PDF

Energy Saving Potentials of Ventilation Controls Based on Real-time Vehicle Detection in Underground Parking Facilities

  • Cho, Hong-Jae;Park, Joon-Young;Jeong, Jae-Weon
    • 국제초고층학회논문집
    • /
    • 제2권4호
    • /
    • pp.331-340
    • /
    • 2013
  • The main topic of this paper is to show a possibility of indoor air quality enhancement and the fan energy savings in underground parking facilities by applying the demand-controlled ventilation (DCV) strategy based on the real-time variation of the traffic load. The established ventilation rate is estimated by considering the passing distance, CO emission rate, idling time of a vehicle, and the floor area of the parking facility. However, they are hard to be integrated into the real-time DCV control. As a solution to this problem, the minimum ventilation rate per a single vehicle is derived in this research based on the actual ventilation data acquired from several existing underground parking facilities. And then its applicability to the DCV based on the real-time variation of the traffic load is verified by simulating the real-time carbon monoxide concentration variation. The energy saving potentials of the proposed DCV strategy is also checked by comparing it with those for the current underground parking facility ventilation systems found in the open literature.

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • 국제초고층학회논문집
    • /
    • 제3권2호
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

차량 배출가스 규제기준이 소요환기량에 미치는 연구 (A study on the effects of exhaust emission standards on the required ventilation rate in vehicle tunnels)

  • 김효규;류지오;송석헌;정창훈
    • 한국터널지하공간학회 논문집
    • /
    • 제19권3호
    • /
    • pp.409-420
    • /
    • 2017
  • 터널환기 계획시 소요환기량은 환기시설 용량을 결정하기 위한 중요한 인자이며, 소요환기량 산정을 위한 차종별 오염 물질 배출량(환기설계를 위한 기준배출량)은 현재 환경부에서 제시하는 '제작차 허용배출 기준'을 근거하여 산정하고 있다. 그러나, 2013년부터 환경부에서는 자동차에서 배출되는 오염물질을 산정하기 위한 규정으로 '자동차 총 오염물질 배출량 산정방법에 관한 규정'을 고시하고 이 규정에 '자동차 차종별 배출계수'를 제시하고 있다. 따라서 도로터널의 소요환기량 산정시 이를 적용하는 것에 대한 검토가 필요한 실정이다. 본 연구에서는 2015년 경유차량의 배출가스 조작사건 이후 자동차 배출가스 규제강화에 따라 터널의 소요환기량 산정에 미치는 영향을 검토하였으며, 최근 환경부에서 개정한 '제작차 허용배출량 기준'과 '자동차 차종별 배출계수'에 의한 소요환기량과 EURO 배출기준을 적용한 소요환기량을 비교 분석하였다. 또한 소요환기량 산정 근거에 따른 합리적인 환기시스템 용량결정을 위한 기초 설계자료를 제공하는 것을 목적으로 한다.

분사형 초공동 수중운동체의 Planing 회피에 대한 연구 (Studies on Planing Avoidance Control for a Ventilated Supercavitating Vehicle)

  • 박종열;김선홍;김낙완
    • 대한조선학회논문집
    • /
    • 제53권3호
    • /
    • pp.201-209
    • /
    • 2016
  • Supercavitation is a technology that reduces frictional resistance of an underwater vehicle by surrounding it with bubbles. Supercavity is divided into natural supercavity and ventilated supercavity which is formed by artificially supplying gas. Planing forces are present when a section of the underwater vehicle goes outside of the cavitation region in the supercavity condition. Planing often leads to an unstable flight because it acts vertically on the body suddenly. In this paper, a relationship between the ventilation rate and the cavitation number is determined. Based on the relationship, desired cavitation number which can avoid to planing is determined and then ventilation controller is designed. The performance of the ventilation controller is verified with a depth change controller using the cavitator. Simulation results show that the ventilation controller can minimize the planing force and moment.

수도권 전동차 객실 $CO_2$농도관측을 통한 자연환기효과 해석 (Analysis of Natural Ventilation Effect of Seoul Metropolitan Subway by Monitoring Indoor $CO_2$ Concentrations)

  • 권순박;조영민;박덕신;박은영;김세영;정미영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.965-968
    • /
    • 2007
  • Two major parameters, i.e. carbon dioxide ($CO_2$) and particulate matters smaller than $10{\mu}m\;(PM_{10})$, were selected as the index pollutants in managing indoor air quality. The former pollutant, $CO_2$, is the index that shows the ventilation status and is exhaled by passengers when they breathe in train or subway. It is generally known that high $CO_2$ concentration in the vehicle may be decreased by insufficient air-tightening vehicle bodies and the air is ventilated when vehicles stop at the station and doors open. However, there is no established proof or quantitatively identified data on how much the $CO_2$ concentration is reduced when ventilation is done while doors are opened. In this study, $CO_2$ concentrations were measured in 6 lines of Korail and one line of Seoul Metro subway linesand a theoretical approach was takento predict the changing trend of $CO_2$ concentrations during the operation of vehicle by using $CO_2$ dilution factor through natural ventilation. As a result, the change could be quantified and it was found that app. 35% of indoor $CO_2$ was removed through natural ventilation.

  • PDF

쏠라 썬루프를 이용한 주차환기 시스템의 효과에 관한 실험적 연구 (An Experimental Study on the Benefit of Pre-ventilation Using Solar Sunroof)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.89-95
    • /
    • 2014
  • This study presented the benefit of the pre-ventilation using solar sunroof with integrated photovoltaic. Recent year, auto-makers make an effort to enhance the fuel efficiency and moreover to clean the cabin passenger's health. Solar energy, one of the alternative energies, adapted in automotive air handling system, in order to pre-ventilation when vehicle parked under the sun in summer. The power generated by a prototype solar sunroof has been used to run blower in a air handing system. And the solar sunroof was installed in a vehicle, and evaluated to find out benefit of the pre-ventilation. The effect of reducing the cabin temperature about $3^{\circ}C{\sim}10^{\circ}C$ with 20 ~ 40W power generator from solar sunroof were obtained in the pre-ventilation test. This reduced thermal load can lead to the reduction of air-conditioning operation time than that of current car. Moreover, fuel economy may increase as a results of the short use of the air-conditioning time. Additionally, Total Volatile Organic Compounds in the cabin is reduced maximum 80% than that of the current vehicle.

방음터널의 자연환기성능 향상에 대한 연구 (The Study on the Improvement of Ventilation Performance in the Soundproof Tunnel)

  • 이경희;조성우;최정민;김경환;박창섭
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.922-929
    • /
    • 2005
  • This paper compared ventilation performance between the sound roof tunnel with flat roof and the sound roof tunnel with gable roof. The ventilation rate of the sound roof tunnel is calculated by natural ventilation rate plus ventilation by vehicle. The roof type is divided by the shape of the roof and the ventilator location on the roof. The results between calculation and CFD on the ventilation rate are almost alike. The ventilation rate on the flat roof is $558.4\;m^3/s$ with mid-ventilator and $496.8\;m^3/s$ with left-right ventilator. The ventilation rate on the gable roof is $653.2\;m^3/s$ with mid-ventilator and $611.6\;m^3/s$ with left-right ventilator. The ventilation rate of soundproof with gable roof is higher than that with flat roof. The ventilation rate and with mid-ventilator is higher than that with left-right ventilator the soundproof roof. Therefore, the ventilation performance of soundproof roof depends on the roof shape and ventilator location on the roof.