• Title/Summary/Keyword: Venom (BV)

Search Result 140, Processing Time 0.024 seconds

A Clinical Pilot Study Comparing Sweet Bee Venom parallel treatment with only Acupuncture Treatment in patient diagnosed with lumbar spine sprain (요추부 염좌로 진단받은 환자에 대한 Sweet Bee Venom 병행 치료와 단독 침 치료의 효과 비교)

  • Shin, Yong-Jeen
    • Journal of Pharmacopuncture
    • /
    • v.14 no.2
    • /
    • pp.37-43
    • /
    • 2011
  • Objectives : This study was carried out to compare the Sweet Bee Venom (referred to as Sweet BV hereafter) acupuncture parallel treatment to treatment with acupuncture only for the patient diagnosed with lumbar spine sprain and find a better treatment. Methods : The subjects were patients diagnosed with lumbar spine sprain and hospitalized at Suncheon oriental medical hospital, which was randomly divided into sweet BV parallel treatment group and acupuncture-only group, and other treatment conditions were maintained the same. Then, VAS (Visual Analogue Scale) was used to compare the difference in the treatment period between the two groups from VAS 10 to VAS 0, from VAS 10 to VAS 5, and from VAS 5 to VAS 0. Result & Conclusion : Sweet BV parallel treatment group and acupuncture-only treatment group were compared regarding the respective treatment period, and as the result, the treatment period from VAS 10 to VAS 5 was significantly reduced in sweet BV parallel treatment group compared to the acupuncture-only treatment group, but the treatment period from VAS 5 to VAS 0 did not show a significant difference. Therefore, it can be said that sweet BV parallel treatment is effective in shortening the treatment period and controlling early pain compared to acupuncture-only treatment.

Acute Dermal Toxicity Study of Bee Venom (Apis mellifera L.) in Rats

  • Han, Sang-Mi;Lee, Gwang-Gill;Park, Kwan-Kyu
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.99-102
    • /
    • 2012
  • Bee venom (Apis mellifera L. BV) has been used as a cosmetic ingredient for anti-ageing, anti-inflammatory and antibacterial functions. The aim of this study was to evaluate the acute toxicity after a single dermal administration of BV, BV was administered to 2 groups of Sprague-Dawley (SD) male and female rats (5 animals/group) at doses of 0 and 1,500 mg/kg body weight (BW). Mortality, clinical signs, body weight changes and gross findings were continually monitored for 15 days following the single dose. There were no unscheduled deaths in any groups during the study period. No BV related clinical signs and body weight changes were observed in any groups during the study period. There were no abnormal gross findings at necropsy on day 15 after the treatment. On the basis of the above results, it was concluded that there were no treatment-related effect on mortality, clinical signs, body weight changes and gross findings in SD rats treated with a single dermal dose of BV at dose of 1,500 mg/kg BW. Therefore, the approximate lethal dose of BV was considered to be over 1,500 mg/kg/day for both sexes of rats. BV may provide a developmental basis for a cosmetic ingredient or external application for topical uses.

A Comparative Study of Korean mistletoe lectin and bee venom on mechanism in inducing apoptosis of Hep G2, a liver cancer cell

  • Lim, Seong-Woo
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.158-170
    • /
    • 2018
  • Objectives: The objective of this study is Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) to experimental prove comparative study of VCA and BV on the anti-cancer effect and mechanisms of action. Methods: In this study, it was examined in a human hepatocellular carcinoma cell line, Hep G2 cells. Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay in vitro. VCA and BV killed Hep G2 cells in a time- and dose-dependent manner. Results: The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action was examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including SAPK/JNK, MAPK and p38. BV also activated PARP-1, MAPK, p38 but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. Conclusion: We examined the involvement of kinase in VCA or BV - induced apoptosis by using kinase inhibitors. VCA-induced apoptosis was partially inhibited by in the presence.

Subcutaneous Injection of Bee Venom in Wistar Rats: effects on blood cells and biochemical parameters

  • Yousefpoor, Yaser;Osanloo, Mahmoud;Mirzaei-Parsa, Mohamad Javad;Najafabadi, Mohammad Reza Hoseini;Hashemi, Seyyed Mohammad;Abbasifard, Mitra
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.250-257
    • /
    • 2022
  • Objectives: Bee venom (BV) therapy is performed by a bee sting or subcutaneous injection of BV. However, there is not much information on the effect of BV on blood parameters after entering the body. This project aimed to assess the side effects of subcutaneous BV injections in healthy rats by measuring the hematological and biochemical parameters. Methods: Various amounts of BV, including 100, 200, and 500 (㎍/day), were subcutaneously injected into rats for 30 days. The results showed that BV affected the metabolism of the liver, kidney, and glands. Results: An increase in blood sugar and a decrease in other biochemical parameters, including cholesterol, triglyceride, urea, creatinine AST, ALT, ALP, and phosphorous, were observed. Results also showed increased counts of white blood cells, neutrophils (%), and platelets and decreased levels of red cells, hemoglobin, and hematocrit. Conclusion: This study demonstrates that BV therapy in medical clinics requires routine care and testing to prevent eventual metabolic and anemia side effects.

Anti-nociceptive effect of bee venom treatment on chronic arthritic pain in rats

  • Kwon, Young-bae;Lee, Jae-dong;Lee, Hye-jung;Han, Ho-jae;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.715-723
    • /
    • 1999
  • Bee venom (BV) has been traditionally applied to relieve pain and to cure inflammatory diseases such as rheumatoid arthritis (RA) and neuritis. While several investigators have evaluated the anti-inflammatory effect of BV treatment, the anti-nociceptive effect of BV treatment on inflammatory pain is not reported. Therefore, we decided to evaluate the analgesic effect of BV treatment using Freund's adjuvant induced chronic arthritis model. Freund's adjuvant-induced arthritis has been used as an experimental animal model for RA in humans to assess the efficacy of the anti-inflammatory/analgesic drugs. In this study, subcutaneous BV treatment (1mg/kg/day) produced significantly reductions of symptoms related to arthritic pain (i.e. mechanical hyperalgesia and thermal hyperalgesia). The anti-nociceptive effect of BV was observed from at least 12 days after BV treatment. Furthermore, BV treatment significantly suppressed adjuvant induced Fos expression in lumbar spinal cord. We also found that local injection of BV into near the inflammatory site (especially Zusanli-acupoint) showed more potent analgesic effect on arthritic pain rather than distant injection of BV from inflammatory site (arbitrary side of back). The present study demonstrates that BV treatment has anti-nociceptive effect on arthritis induced inflammatory pain. The analgesic effect of BV on RA is probably mediated by the effect of BV itself or possible other mechanism such as counter-irritation. Furthermore, it is possible that BV acupuncture is one of the promising candidates for long-term therapy of RA.

  • PDF

Effects of Sweet Bee Venom on the Central Nervous System in Rats -using the Functional Observational Battery- (Sweet BV 시술이 Rat의 중추신경계에 미치는 영향 - 기능관찰 종합평가를 이용하여-)

  • An, Joong-Chul;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.14 no.3
    • /
    • pp.19-45
    • /
    • 2011
  • Objectives: This study was performed to analyse the effects of Sweet Bee Venom(Sweet BV-pure melittin, the major component of honey bee venom) on the central nervous system in rats. Methods: All experiments were conducted at Biotoxtech Company, a non-clinical studies authorized institution, under the regulations of Good Laboratory Practice (GLP). Male rats of 5 weeks old were chosen for this study and after confirming condition of rats was stable, Sweet BV was administered in thigh muscle of rats. And checked the effects of Sweet BV on the central nervous system using the functional observational battery (FOB), which is a neuro-toxicity screening assay composed of 30 descriptive, scalar, binary, and continuous endpoints. And home cage observations, home cage removal and handling, open field activity, sensorimotor reflex test/physiological measurements were conducted. Results: 1. In the home cage observation, there was not observed any abnormal signs in rats. 2. In the observation of open field activity, the reduction of number of unit areas crossed and rearing count was observed caused by Sweet BV treatment. 3. In the observation of handling reactivity, there was not observed any abnormal signs in rats. 4. In the observation of sensorimotor reflex tests/physiological measurements, there was not observed any neurotoxic signs in rats. 5. In the measurement of rectal temperature, treatment of Sweet BV did not showed great influences in the body temperature of rats. Conclusions: Above findings suggest that Sweet BV is relatively safe treatment in the central nervous system. But in the using of over dose, Sweet BV may the cause of local pain and disturbance of movement. Further studies on the subject should be conducted to yield more concrete evidences.

Effects of Bee Venom on Glioma Cells (봉독(峰毒)이 Glioma Cell에 미치는 효과(效果))

  • Lee, Joo-Yeon;Kim, In-Ja;Choi, Bang-Seob;Kim, Geun-Woo;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.19 no.3
    • /
    • pp.117-127
    • /
    • 2008
  • Objective: Bee venom (BV) has been used for the treatment of inflammatory diseases such as rheumatoid arthritis and relief of pain in Oriental medicine. The two main components of BV are melittin and phospholipase A2 (PLA2). Of these, melittin, the major active ingredient of BV, has been reported to induce apoptosis and to possess anti tumor effects. Several studies have established that the agents inducing apoptosis in target organs suppress tumorigenesis. As the other component, PLA2 has been reported to induce neurite outgrowth in PC12 cells. However, there was no report about proliferative effect of BV in neuronal cells. In order to examine the effect of BV on glioma cell, human glioma cell line, U87 was used. Methods: Analysis of proliferation was confirmed by MTT assay. BV increased cell number through dose and duration dependent manner and these effects are apparent at a concentration of 10 ug/ml. To observe which signaling molecules will be activated by BV, phosphorylation of Akt, MAPK, PYK2 or CREB were examined by Western blot analysis. To study the long term effect of BV in U87 cells, the image of cells treated with BV for 4 days were obtained. Results: The phosphorylation levels of PYK2 and Akt were increased at 5 min after addition of 10 ug/ml of BV and sustained to 2 hours. On the other hand, phosphorylation of MAPK and CREB were increased at 5 min, maximum at 10 min, and returned to 30 min. These imply that BV may activate two different signaling pathways, PYK2/Akt and MAPK/CREB. BV treated cells showed increased neurite number and length. Conclusion: These results propose that BV may induce differentiation as well as proliferation of U87 cells through the activation of PYK2/ Akt and MAPK/ CREB.

  • PDF

Effects of Bee Venom Acupuncture Injected at Hwando(GB30) on Neuropathic Pain in Rats (환도혈(GB30) 봉독 약침 자극이 백서의 신경병리성 동통 억제에 미치는 영향)

  • Youn, Dae-Hwan;Na, Chang-Su;Yoon, Yeo-Choong;Lee, Dong-Hyun
    • Journal of Acupuncture Research
    • /
    • v.22 no.5
    • /
    • pp.67-77
    • /
    • 2005
  • Objectives : The purpose of this study is to examine if Bee Venom Acupuncture may be effective to the neuropathic pain(mechanical allodynia, cold allodynia) in a rat model of neuropathic pain. Methods : To produce the model of neuropathic pain, under isoflurane 2.5% anesthesia, tibial nerve and sural nerve was resected. After the neuropathic surgery, the author examined if the animals exhibited the behavioral signs of alloynia. The allodynia was assessed by stimulating the medial malleolus with von Frey filament and acetone. Three weeks after the neuropathic surgery, Bee Venom Acupuncture was injected at Hwando(GB30) one time a day for one week. After that, the author examined the withdrawl response of neuropathic rats' legs by yon Frey filament and acetone stimulation. And also the author examined c-Fos in the midbrain central gray of neuropathic rats and the change of WBC count in the blood of neuropathic rats. Results : The Bee Venom Acupuncture injected Hwando(GB30) decreased the withdrawl response of mechanical allodynia in BV-2, BV-3 group as compared with control group. The Bee Venom Acupuncture injected Hwando(GB30) decreased the withdrawl response of chemical allodynia(cold allodynia) in BV-2, BV-3 group as compared with control group. The Bee Venom Acupuncture injected Hwando(GB30) showed the significant difference between control group and BV-2 group, control group and BV-3 group in the c-Fos expression and U count. Conclusion : We have noticed that Bee Venom Acupuncture at Hwando(GB30) decreased mechanical allodynia and cold allodynia in the model of neuropathic pain compared with the control group. C-Fos expression in the central gray of that group was also decreased compared with the control group. Psin control using Bee Venom Acupuncture was accumulated as time goes by. This study can be used as a basic resource on a study and a treatment of pain.

  • PDF

Effects of the Bee Venom on Human Gastric Adenocarcinoma Cell Lines (봉독이 위암 세포주에 미치는 효과)

  • Heo, Gyeong;Kim, Myung Ho;Lim, Seong Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.92-98
    • /
    • 2013
  • Bee Venom(below BV) has been used in alternative medicine to treat the diseases, such as pain diseases. BV contains a variety of peptides, including melittin, apamin, adolapin, MCD peptide, enzymes(i.e. PLA2), amines(i.e. histamine and epinephrine), and nonpeptide components. The two main components of BV are melittin and PLA2. The cell cytotoxic effects through the activation of PLA2 by melittin have been suggested to be the critical mechanism for the depress of cancer cell. Melittin and PLA2 have been reported to induce apoptosis and to possess anti-cancer effects and neurite outgrowth in PC12 cells. Analysis of proliferation was confirmed by MTT assay. BV decreased cell number through dose- and duration-dependent manner and these effects are apparent at a concentration of 3 ${\mu}g/ml$. To observe which signaling molecules will be activated by BV, phosphorylation of ERK, p38 MAPK, JNK and ERM were examined by Western blot analysis. To study the long term effect of BV in human gastric adenocarcinoma cell lines, the image of cells treated with BV for 4 days were obtained. BV was shown to exhibit anti-cancer activity in human gastric adenocarcinoma cell lines at a broad range of concentrations of 3 ${\mu}g/ml$. ERK, p38 MAPK and JNK were found to increase in BV treated cells. However, ERM which known to be involved in the cell death, was gradually decreased to 30minutes after addition 3 ${\mu}g/ml$ of BV. These results provide a possible BV-induced inhibitory signal for cancer proliferation that is initiated by the decrease in ERM activity. Moreover, it is likely that the activation of ERK, p38 MAPK and JNK are required for the BV-induced inhibition of cancer proliferation.

Atopic Dermatitis-Related Inflammation in Macrophages and Keratinocytes: The Inhibitory Effects of Bee Venom

  • Kim, Deok-Hyun;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.36 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • Background: This study investigated the anti-inflammatory effects of bee venom (BV) through the inhibition of nuclear factor kappa beta ($NF-{\kappa}B$) expression in macrophages and keratinocytes. Methods: Cell viability assays were performed to investigate the cytotoxicity of BV in activated macrophages [lipopolysaccharide (LPS)] and keratinocytes [interferon-gamma/tumor necrosis factor-alpha ($IFN-{\gamma}/TNF-{\alpha}$)]. A luciferase assay was performed to investigate the cellular expression of $NF-{\kappa}B$ in relation to BV dose. The expression of $NF-{\kappa}B$ inhibitors ($p-I{\kappa}B{\alpha}$, $I{\kappa}B{\alpha}$, and p50 and p65) were determined by Western Blot analysis, and the electromobility shift assay. A nitrite quantification assay was performed to investigate the effect of BV, and $NF-{\kappa}B$ inhibitor on nitric oxide (NO) production in macrophages. In addition, Western Blot analysis was performed to investigate the effect of BV on the expression of mitogen-activated protein kinases (MAPK) in activated macrophages and keratinocytes. Results: BV was not cytotoxic to activated macrophages and keratinocytes. Transcriptional activity of $NF-{\kappa}B$, and p50, p65, and $p-I{\kappa}B{\alpha}$ expression was reduced by treatment with BV in activated macrophages and keratinocytes. Treatment with BV and an $NF-{\kappa}B$ inhibitor, reduced the production of NO by activated macrophages, and also reduced $NF-{\kappa}B$ transcriptional activity in activated keratinocytes (compared with either BV, or $NF-{\kappa}B$ inhibitor treatment). Furthermore, BV decreased p38, p-p38, JNK, and p-JNK expression in LPS-activated macrophages and $IFN-{\gamma}/TNF-{\alpha}$-activated keratinocytes. Conclusion: BV blocked the signaling pathway of $NF-{\kappa}B$, which plays an important role in the inflammatory response in macrophages and keratinocytes. These findings provided the possibility of BV in the treatment of atopic dermatitis.