• Title/Summary/Keyword: Veneering ceramic

Search Result 72, Processing Time 0.02 seconds

Observation of Fracture Strengths According to the Core Materials for All Ceramic Bridge (전부도재교의치의 코어재료에 따른 파절강도 관찰)

  • Chung, In-Sung;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.351-356
    • /
    • 2010
  • Purpose: The purpose of this study was to evaluate the fracture strength between the core and veneering ceramic according to 2 core materials, In-Ceram Alumina and In-Ceram Zirconia, fabricated by electro ceramic layering technique. 2 different fixed partial denture cores of three units were veneered by veneering ceramic(Ceranion, Noritake) (n=10). Methods: The fracture strengths between the core and veneering ceramic were measured through the 3 point bending test. The interfaces between the core and veneering ceramic were observed with the X-ray dot mapping of EPMA. Results: The result of fracture strength was observed that IZP group, In-Ceram Zirconia core, had higher fracture strength. IPA group, In-Ceram Alumina core, had fracture strength of 359.9(${\pm}$86.2) N. IZP group, In-Ceram Zirconia core, had fracture strength of 823.2(${\pm}$243.0) N. X-ray dot mapping observation showed that a major element in the core and veneering ceramic of IPA group was alumina and silica, respectively. No binder was observed in interfaces between the core and veneering ceramic, and no ion diffusion or transition was observed between the core and veneering ceramic. However, apparent ion diffusion or transition was observed between the core and veneering ceramic of IZP group.

Influence of coloring liquids on the shear bond strength between zirconia and veneering ceramic (색소체용액 침투가 지르코니아 및 전장용 세라믹의 전단결합강도에 미치는 영향)

  • Jung, Jong-Hyun;Oh, Gye-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.291-298
    • /
    • 2016
  • Purpose: This study was to evaluate the effect of coloring liquids on the shear bond strength between zirconia and veneering ceramic. Methods: Zirconia(15 mm in diameter, 2.5 mm in thickness; n=40) used in the experiment were divided into 5 groups depending on the coloring liquid. Each specimen were polished using a polishing machine(LaboPol-2, Struers, UK). A cylinder of veneering porcelain(6 mm in diameter, 3 mm in thickness) was fabricated and fired on zirconia surfaces. The shear bond strength was measured using a universal testing machine(Model 4302, Instron, USA). All data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparisons test. After the shear bond test, fracture surfaces were examined by SEM. Results: Colored zirconia showed a higher shear bonding strength than that of uncolored zirconia except for colored zirconia immersed in Zirkonzahn coloring liquid. In particular, colored zirconia immersed in Kuwotech coloring liquid showed the highest shear bond strength. After the shear bond test, mixed failure patterns were mainly observed in the failure between zirconia and veneering ceramic. Conclusion: Coloring liquid enhanced the shear bond strength zirconia and veneering ceramic than uncolored zirconia.

Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns

  • Pak, Hyun-Soon;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • PURPOSE. Marginal fit is a very important factor considering the restoration's long-term success. However, adding porcelain to copings can cause distortion and lead to an inadequate fit which exposes more luting material to the oral environment and causes secondary caries. The purpose of this study was to compare the marginal fit of 2 different all-ceramic crown systems before and after porcelain veneering. This study was also intended to verify the marginal fit of crowns originated from green machining of partially sintered blocks of zirconia (Lava CAD/CAM system) and that of crowns obtained through machining of fully sintered blocks of zirconia (Digident CAD/CAM system). MATERIALS AND METHODS. 20 crowns were made per each system and the marginal fit was evaluated through a light microscope with image processing (Accura 2000) at 50 points that were randomly selected. Each crown was measured twice: the first measurement was done after obtaining a 0.5 mm coping and the second measurement was done after porcelain veneering. The means and standard deviations were calculated and statistical inferences among the 2 groups were made using independent t-test and within the same group through paired t-test. RESULTS. The means and standard deviations of the marginal fit were $61.52{\pm}2.88{\mu}m$ for the Digident CAD/CAM zirconia ceramic crowns before porcelain veneering and $83.15{\pm}3.51{\mu}m$ after porcelain veneering. Lava CAD/CAM zirconia ceramic crowns showed means and standard deviations of $62.22{\pm}1.78{\mu}m$ before porcelain veneering and $82.03{\pm}1.85{\mu}m$ after porcelain veneering. Both groups showed significant differences when analyzing the marginal gaps before and after porcelain veneering within each group. However, no significant differences were found when comparing the marginal gaps of each group before porcelain veneering and after porcelain veneering as well. CONCLUSION. The 2 all-ceramic crown systems showed marginal gaps that were within a reported clinically acceptable range of marginal discrepancy.

A Study on SEM Observations of Low Temperature Degradation in Zirconia Dental Ceramics (저온열화에 따른 치과용 지르코니아의 전자현미경 관찰 연구)

  • Lee, Jung-Hwan;Joo, Kyu-Ji;Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.33 no.1
    • /
    • pp.15-23
    • /
    • 2011
  • Purpose: Thy yttria tetragonal zirconia polycrystalline(Y-TZP) is a good structural ceramic for dental restoration. But it have a problem that delamination of veneering ceramic from the Y-TZP core materials. The problem generally occur at the interface, thus this study was conducted to evaluate the interface of Y-TZP using scanning electron microscopy(SEM). Methods: To investigate this aspect, high-resolution SEM observations were made of polished and etched (HF content gel) cross-sections of the interface area. Dry and moist veneering porcelain powders were built up on the zirconia base. Results: The extent of this surface faceting is dependent upon the moisture content of the porcelain powder and the firing temperature. More moisture and higher final heating temperature accelerates the observed faceting of the Y-TZP grains at the interface to the veneering ceramic. Conclusion: These changes of the Y-TZP grains indicate that destabilization of the tetragonal phase of zirconia occurs at the interface during veneering with ceramic. It may result in a reduction of the stability of the zirconia and interface.

Effect of sandblasting and liner on shear bond strength of veneering ceramic to zirconia (샌드블라스팅 처리와 라이너가 지르코니아와 전장도재의 전단결합 강도에 미치는 영향)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.6-12
    • /
    • 2021
  • Purpose: This study aimed to compare the shear bond strength between zirconia cores and veneer ceramics as per the sand blasting and liner treatments. Methods: The following 4 groups of zirconia-veneering ceramic specimens were prepared: (1) Group I, untreated; (2) Group II, with 110 ㎛ aluminium oxide (Al2O3) sandblasting; (3) Group III, with liner (IPS e.max ZirLiner; Ivoclar Vivadent); and (4) Group IV, with 110 ㎛ Al2O3 sand blasting and liner. Surface roughness was measured for all the prepared specimens, and the surface morphology was observed using a scanning electron microscope. All the samples (n=40) were fixed with measuring jigs, and shear bond strengths were obtained using a universal testing machine with a crosshead speed of 0.5 mm/min. The shear bond strength data were analyzed using one-way analysis of variance and t-test. The post hoc comparison was performed using the Tukey's test (α=0.05). Results: A significant difference in the surface roughness was observed between the specimens of groups I and II (p<0.05). Surface treatment with liner and sandblasting showed higher shear bond strength between zirconia core and veneering ceramic (p<0.05). Conclusion: The sand blasting and liner treatment increased the shear bond strength between zirconia core and veneering ceramic.

Influence of surface treatments on the shear bond strength between zirconia ceramic and zirconia veneering ceramics (지르코니아의 표면 처리에 따른 전장용 세라믹과의 전단결합강도)

  • Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.19-27
    • /
    • 2013
  • Purpose: The aim of this research was to evaluate the shear bond strength of different zirconia veneering ceramics with and without liner glass materials to yttria partially-stabilized tetragonal zirconia polycrystalline(Y-TZP). Methods: Five co mmercial zirconia veneering ceramics were used in this study, E-Max(EM), Creation ZI(CR), Cercon ceram kiss(CE), Triceram(TR) and Zirkonzahn ICE(ZI). All samples were prepared according to manufacturer's instructions. Experimental industrially manufactured Y-TZP ceramic blocks(diameter: 2.7 mm; height: 13.5 mm) were used in this study. Shear bond strength between zirconia ceramic coping and zirconia veneering ceramics were evaluated by the push-shear bond test. The fracture load data were analyzed using ANOVA and Scheffe's test(${\alpha}$=0.05). The fractured surfaces of zirconia core ceraimc and zirconia veneering ceramics were observed using a scanning electron microscope(SEM). Results: The mean shear bond strengths ranged from 20 MPa ($20.12{\pm}6.34$ MPa) to 66.6 MPa ($66.62{\pm}10.01$ MPa). The Triceram(TRG) showed the highest value and Creation ZI(CR) showed the lowest value. In all groups, Zirconia liner and glass material groups was significantly higher shear bond strength than without liner(P<0.05), with the exception of Cercon ceram kiss(CE)groups. Conclusion: Zirconia bonding materials may have the advantage of improved bond strength between zirconia ceramic core and veneering ceramics.

Biaxial flexural strength of bilayered zirconia using various veneering ceramics

  • Chantranikul, Natravee;Salimee, Prarom
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.5
    • /
    • pp.358-367
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS. Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (${\alpha}$=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. RESULTS. It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. CONCLUSION. From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength.

Effect of Conditioning Methods on the Shear Bond Strength of Veneering composite on Zirconia Ceramic (Y-TZP ceramic의 표면처리에 따른 전장용 레진의 전단결합강도)

  • Nam, Hyun-Seok;Song, Kwang-Yeob;Ahn, Seung-Geun;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.26 no.3
    • /
    • pp.253-264
    • /
    • 2010
  • The purpose of this study is to know whether Yttrium-stabilized-tetragonal -zirconia-polycrystal(Y-TZP ceramic) gets enough shear bond strength for clinical uses by applying veneering composite resin through surface treatment on it and finally to compare it with the case of applying veneering porcelain. LavaTM zirconia frameworks(3M ESPE, Seefeld, Germany) were prepared. Group P was manufactured with LavaTM Ceram(3M ESPE, Seefeld, Germany) in cylindrical shape which has 4mm diameter, 5mm height. Group ZSR disposed sandblasting and applied silane, bonding agent and after that indirect composite resin was applied. Group ZRR got tribochemical coating by RocatecTM system(3M ESPE. Seefeld, Germany) and treated silane. Finally Group ZPR took the same treatment and applied LavaTM Ceram in the size of 0.3-0.5mm height. After burning out, sandblasting, HF and silane was applied. And then, indirect composite resin was applied. 1000 cycle thermocycling was performed in $5-55^{\circ}C$ and shear bond strength was measured. There were no significant differences between combining veneering porcelain to Y-TZP ceramic group and combining veneering resin to Y-TZP ceramic group in the aspect of shear bond strength (p>.05).

A comparative study of the shear bond strength and failure mode between zirconia copings and veneering ceramics (지르코니아 코핑과 전장도재 간의 전단결합강도와 파절양상 비교)

  • Kim, Won-Young;Jeon, Byung-Wook;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.243-250
    • /
    • 2015
  • Purpose: The aim of this study was to investigate the shear bond strength between various commercial zirconia coping and veneering ceramic, and to observe the failure mode. Methods: For each zirconia block (iJAM Emerald, LUXEN Smile block, ICE Zirkon transluzent), 10 rectangular specimens were layered with Cercon ceram kiss, IPS e.max ceram, ICE Zirkon ceramic according to recommended by the manufacturer. The shear bond strength tests of the veneering porcelain to zirconia were carried out until fracture by a universal testing machine. After the shear bond tests, failure modes were characterized visually, under a stereomicroscope, such as adhesive, cohesive, or mixed. Data were analyzed with One-way ANOVA followed by Scheffe's tests. Results: The shear bond strength ($mean{\pm}SD$) of zirconia-veneer ceramic were JC group $13.9{\pm}3.6MPa$; JE group $17.7{\pm}2.4MPa$; JI group $15.1{\pm}2.5MPa$; LC group $9.5{\pm}1.5MPa$; LE group $16.2{\pm}2.3MPa$; LI group $12.6{\pm}0.8MPa$; ZC group $16.0{\pm}2.3MPa$; ZE group $18.5{\pm}3.4MPa$; and ZI group $15.3{\pm}3.2MPa$. The One-way ANOVA showed a significant difference between groups (p<0.05). The failure mode in most experimental groups was mixed failure, except for the LC group, which showed adhesive failure, and JE group, LE group and ZE group showed cohesive failure. Conclusion: For IPS e.max ceram, the shear bond strength value was highest for all kinds of zirconia blocks. For ICE Zirkon transluzent, the shear bond strength value was highest for all kinds of veneering ceramics. Most of experimental group interfaces revealed mixed failure mode.

Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

  • Tarib, Natasya Ahmad;Anuar, Norsamihah;Ahmad, Marlynda
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.339-344
    • /
    • 2016
  • PURPOSE. Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS. Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS. Mean shear bond strengths were obtained for MA ($19.00{\pm}6.39MPa$), ZO ($24.45{\pm}5.14MPa$) and LD ($13.62{\pm}5.12MPa$). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION. Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group.