• Title/Summary/Keyword: Velocity-field

Search Result 3,152, Processing Time 0.038 seconds

A Study on the selection and noise test of elelctronic sensor for Vacuum Circuit Breaker (진공차단기용 전자식 센서의 선정 및 노이즈 시험에 관한 연구)

  • Lee, Ki Seon;Park, Jung Cheul;Chu, Soon Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2503-2508
    • /
    • 2014
  • This study is about the selection and noise test of electronic sensor which is preceded by electric Operating Cell(EOC) development using electronic sensor technology to solve the structural weakness of Mechanism Operated Cell(MOC) in VCB, and has a final target in product development minimizing contact malfunction of the chattering or rebounce states caused by existing MOC. In this test results, when opening and closing VCB, rising velocity of surge voltage in opening time was measured 4.2 times faster than closing time and noise decibel value was measured respectively 120dB and 110dB. When supplying 60kV power frequency overvoltage, we found that sensor output graph in VCB opening and closing times operated stably without distortion. When supplying 150kV $1.2{\times}50{\mu}s$ impulse frequency voltage, we found that voltage graph of output contact in sensor opening and closing sides maintained a normal condition without distortion, and when supplying 2500A current, we found that tested result of electric field noise operated stably without distortion.

Estimation of Long-term Aging Compressive Strength Through Non-Destructive Testing of Concrete Structure Using Mineral Admixtures (혼화재를 사용한 콘크리트 구조체의 비파괴 시험에 의한 장기재령 압축강도 추정)

  • Kim, Jeong-Sup;Shin, Yong-Seok;Lee, Chang-Hyun;Lee, Seung-Jung;Kim, Kwang-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.426-434
    • /
    • 2011
  • Recently, the use of mineral admixtures in concrete has been studied in many laboratories, and been applied in the field. But the non-destructive testing equation proposed in Japan for normal strength concrete has been used to determine compressive strength, because there has been a lack of systematic research on the compressive strength of concrete using mineral admixtures. For this reason, it is essential to suggest a non-destructive testing equation to estimate the compressive strength of concrete using mineral admixtures. Therefore, this study made a cylindrical specimen and core tube specimen of concrete using a mineral admixture, and suggested a strength estimation of long-term age (4 years) through non-destructive and destructive tests. The results of the research are as follows. Comparing error rates between conventional suggested equations and this estimated equation shows some differences by age, but the error rate of this study was reduced to 0.3 %~115.0 % compared to conventional equations by re-bound hammering, 0.2 %~22.8 % by the ultrasound velocity method and 0.5 %~102.3 % by complex method. Accordingly, it is judged to be suitable for assessing the compressive strength of concretes using mineral admixtures.

An experimental study on vortex formation in groyne fields according to groyne spacing and installed angles (수제간격과 설치각에 따른 수제역내 와형성에 대한 실험 연구)

  • Kang, Joongu;Kim, Sungjoong
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.35-48
    • /
    • 2018
  • Groynes are installed generally to protect the riverside or the river bank from the erosion caused by water flows by controlling the flow direction and velocity in rivers. In the past, groynes were used to secure enough depth of water in canals. As there has been a growing interest in river restoration and the natural river maintenance since 2000, groynes are proposed as a major environmental hydraulic structure because the flow control and various river bed conditions around the groyne can contribute to habitat functions. Groynes are typically installed in a series. In designing groyne series, groyne spacing is an important factor because the flow changes in the main canal and the flow inside the groyne area occurs variably depending on the groyne spacing. This study provide information to determine the groyne spacing suitable for the purpose of the groyne by examining the flows that variably changes according to the groyne spacing and angle in the recirculation zone of the groyne field. In particular, the formation of vortex, the location of vortex core and the water flow near the river bank, all of which occur in the recirculation zone inside the groyne area, were mainly analyzed to examine the flow characteristics near the river bank that influences the safety of the river bank area. The results of the experiment will serve as important basic data to examine changes in the river bed inside the groyne area as well as the safety of river banks following the installation of groyne series.

Analysis on Dimensional Stability of Porosity Soil Block for Vegetation Reinforcement (식생강화를 위한 다공성 소일 블록의 치수안정성 해석)

  • Park, Sang Woo;Ahn, Tae Jin;Ahn, Sang Ho;Kwon, Soon Hyun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.91-103
    • /
    • 2013
  • In this Research, in order to improve problems of not enough technical validation and structural and hydraulic stability evaluation when nature-friendly revetment block is applied to field, hydraulic stability evaluation according to hydraulic behavior change of porosity soil block for vegetation reinforcement that secures ecological function was reviewed. By selecting object section, numerical analysis and hydraulic model experiments were performed; for numerical analysis, by using 1-dimensional numerical analysis model HEC-RAS and 2-dimensional numerical analysis RMA-2, one-dimensional(1D) and two-dimensional(2D) numerical analysis were performed; by applying Froude's similarity law, reduced-scale hydraulic model experiments according to vegetation existence were performed. In hydraulic model experiment, for validity of experiment result, the result of velocity and tractive force of reduced-scale hydraulic model experiments was converted to prototype so that it can be compared and reviewed under the same condition of one-dimensional(1D) and two-dimensional(2D) numerical analysis result; as a result, it was confirmed that comparatively united result appeared, and by comparing prototype-converted tractive force result with revetment's allowable tractive force coming from an existing research, block's hydraulic stability was suggested.

A study on the optimization design of pulse air jet system to improve bag-filter performance (여과집진기의 탈진 성능 향상을 위한 충격 기류 분사 시스템 최적화 설계에 관한 연구)

  • Hong, Sung-Gil;Jung, Yu-Jin;Park, Ki-Woo;Jeong, Moon-Heon;Lim, Ki-Hyuk;Suh, Hye-Min;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3792-3799
    • /
    • 2012
  • The dedusting characteristics of pulse air jet type dedusting system which is widely applied in the industries were identified by utilizing the computational fluid dynamics (CFD) and the dedusting performance in modified shape of dedusting unit was compared in this study. The review on the dedusting air volume, air stream distribution and inflow velocity distribution on each shape of dedusting part showed that the case of installing the nozzle on the blow tube (Case-3) and the case of installing the double intaking tube to the venturi (Case-4 and Case-5) were more excellent than the structure (Case-1) which is widely applied in the field in its amplification effect on the air volume and extension of stream width. The specification of venturi was decided to apply the selected Case-5 for the option of the commercial back filter. It is considered that the dedusting air volume will be maintained in maximum in the case of 50 mm and 90 mm for the diameter of internal and external intaking pipe respectively.

Study of a Recurring Anticyclonic Eddy off Wonsan Coast in Northern Korea Using Satellite Tracking Drifter, Satellite Ocean Color and Sea Surface Temperature Imagery (위성원격탐사를 이용한 동해 원산연안의 재발생 와동류 연구)

  • 서영상;장이현;김정희
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.211-220
    • /
    • 2000
  • Even though recurring eddies at the terminal end of the East Korean Warm Current have been identified in the thermal infrared imagery from the NOAA/AVHRR sensor and ocean color data from Orbview-2/SeaWiFS sensor, it is difficult to make observation in the field regarding recurring eddies located around the Wonsan coastal area in North Korea. But we could get in situ data related to an eddy from an ARGOS satellite tracking drifter trapped in the eddy on January 4th, 1999. An ARGOS drifter, a NOAA satellite tracked buoy was trapped by the eddy during January 4th.March 18, 1999. The ARGOS drifter rotated 10 times per 72 days on the edge of the eddy located at $39^{\circ}N$, $129^{\circ}E$. The diameter of the eddy was about 100 km. The horizontal rotation velocity of the recurring cold-core anti-cyclonic eddy was 1.53 km/h(42 cm/sec). The sea surface temperatures of the eddy varied from $14.7^{\circ}C$ on January 5, 1999 to $9.6^{\circ}C$ on March 18,1999. To study the mechanism of the recurring eddy. we tried to find out the relationship between the vector of the drifter moving in the eddy and the wind vector in Sokcho and Ulleung Island located near the eddy in southern Korea, and the difference in sea level between Ulleung Island and Mukho. We hope the results of this study would be useful for calibration and validation data of simulation and numerical modeling studies of the recurring eddy.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Elastic Wave Propagation in Nuclear Power Plant Containment Building Walls Considering Liner Plate and Concrete Cavity (라이너 플레이트 및 콘크리트 공동을 고려한 원전 격납건물 벽체의 탄성파 전파 해석)

  • Kim, Eunyoung;Kim, Boyoung;Kang, Jun Won;Lee, Hongpyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.167-174
    • /
    • 2021
  • Recent investigation into the integrity of nuclear containment buildings has highlighted the importance of developing an elaborate diagnostic method to evaluate the distribution and size of cavities inside concrete walls. As part of developing such a method, this paper presents a finite element approach to modeling elastic waves propagating in the containment building walls of a nuclear power plant. We introduce a perfectly matched layer (PML) wave-absorbing boundary to limit the large-scale nuclear containment wall to the region of interest. The formulation results in a semi-discrete form with symmetric damping and stiffness matrices. The transient elastic wave equations for a mixed unsplit-field PML were solved for displacement and stresses in the time domain. Numerical results show that the sensitivity of displacement, velocity, acceleration, and stresses is large depending on the size and location of the cavity. The dynamic response of the wall slightly differs depending on the existence of the containment liner plate. The results of this study can be applied to a full-waveform inversion approach for characterizing cavities inside a containment wall.

Development of a Self Balancing Electric Wheelbarrow (자기 균형 기능이 있는 외발 전동 손수레 개발)

  • Lee, Myung-Sub;Sung, Young-Whee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • In this paper, a new type of electric wheelbarrow is proposed and developed. The developed electric wheelbarrow is equipped with an attitude reference system(ARS) sensor, which consists of 3-axis acceleration sensor and 2-axis Gyro sensor so that it can estimate pitch angle and roll angle. When an operator tilts the wheelbarrow up and down, the pitch angle is detected. The sign of the pitch angle is interpreted as the operator's intention for moving the wheelbarrow forward or backward and the controller drives the wheel of the wheelbarrow with the velocity according to the magnitude of the detected pitch angle. A cargo box of the wheelbarrow is designed to rotate and is controlled to maintain level always, so an operator can handle the electric wheelbarrow easily and safely. The wheelbarrow consists of an in-wheel motor, a DC motor, motor drives, an ARS sensor considering economical use in industrial field. Three experiments are performed to verify the feasibility and stability of the electric wheelbarrow.

An analysis of hydraulic characteristics of stepped boulder fishway installed in mountain stream (산지하천에 설치된 계단식 전석 어도의 수리 특성 분석)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.99-109
    • /
    • 2022
  • This study was intended to suggest the applicability of stepped boulder fishway using the concept of traditional boulder weir, focusing on the problems of existing concrete pool-and-weir fishways installed in mountain streams. To achieve this purpose, a stepped boulder fishway was designed and constructed as a pilot project in consideration of ascending capacity of the selected target fishes. Under the given discharge conditions, the hydraulic characteristics of the fishway were investigated in the field, and the characteristics and ascending capacity of the fishes were compared and analyzed. The fishway had a short length and steep slope, but the mean drops between each baffle were the range of 0.15 to 0.29 m, and this range satisfied the limit condition of about 0.40 m, which was in the limit of the drop that target fishes can ascend. The mean velocities of each baffle and pool were 0.82 to 0.87 m/sec and 0.13 to 0.24 m/sec. This result satisfied the conditions of burst speed (10 to 30 times of body length) and mean velocity of the resting pool (7 to 25% of burst speed) for target fishes. Since the bottom surface of the pool formed of boulders had a gentle reverse slope and rotational flow did not occur, the efficiency of fishway can be increased, and it will also be possible to solve the maintenance problem by flushing bed materials.