• Title/Summary/Keyword: Velocity characteristic of working fluid

Search Result 8, Processing Time 0.019 seconds

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (I) - Velocity Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(I) - 작동유체 유속 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.389-394
    • /
    • 2007
  • The power output of the stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of the regenerator matrix, characteristics of working fluid velocities were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. When a regenerator is not filled with any wire screen, working fluid velocity of the oscillating flow shows 1.3 times faster than that of one directional flow. 2. When a regenerator is filled with the wire screen of No.50, working fluid velocity of the oscillating flow reveals 2.5 times faster than that of one directional flow. 3. When a regenerator is filled with the wire screen of No. 100, working fluid velocity of the oscillating flow shows 2 times faster than that of one directional flow, regardless of the number of packed wire screens. 4. Working fluid velocity is decreased wire the increase in number of meshes and packed wire screens.

Velocity and Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator (II) - Flow Friction Characteristic of Working Fluid in Stirling Engine Regenerator - (스털링기관 재생기내의 작동유체 유속 및 마찰저항 특성(II) - 작동유체 유동마찰저항 특성 -)

  • Kim, T.H.;Choi, C.R.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • The output of the Stirling engine is influenced by the regenerator effectiveness. The regenerator effectiveness is influenced by heat transfer and flow friction loss of the regenerator matrix. In this paper, in order to provide basic data for the design of regenerator matrix, characteristics of flow friction loss were investigated by a packed method of matrix in the oscillating flow as the same condition of operation in a Stirling engine. As matrices, two different wire screens were used. The results are summarized as follows; 1. With the wire screen of No. 50 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 3 times higher than that of one directional flow, not too much influenced by the number of packed meshes. 2. With the wire screen of No. 100 as regenerator matrices, pressure drop of working fluid of the oscillating flow is shown as 2.5 times on the average higher than that of one directional flow, not too much influenced by the number of packed meshes. 3. Under one directional flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f=\frac{0.00326639}{Re\iota}-1.29106{\times}10^{-4}$$ 4. Under oscillating flow which used regenerator matrices with both 200, 240, and 280 wire screens of No. 50 and 320, 370, and 420 wire screens of No. 100, the relationship between the friction factor and Reynold No. is shown as the following formula. $$f_r=\frac{0.000918567}{Re\iota}+1.86101{\times}10^{-5}$$ 5. The pressure drop is shown as high in proportion as the number of meshes has been higher, and the number of packed wire screens as matrices increases.

A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan (치수효과를 고려한 횡류홴의 작동특성연구)

  • Kim, H.-S.;Kim, Youn-J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.583-589
    • /
    • 2004
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fan has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control of the size and position, is the important cause of performance decrease. In this study, experiments are carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to research the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spital, which is the important factor haying an effect on it.

  • PDF

A Numerical Analysis on Flow Characteristic in a Standard Cyclone Dust Separator (표준 사이클론 집진기 내 유동특성에 관한 수치해석)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.97-103
    • /
    • 2011
  • This study is numerical analysis on flow characteristic in a standard cyclone dust separator. The cyclone dust separator is widely used in a industrial applications as a method for dust removed from gases. In cyclone chamber, a very complex flow field is formed, involving the interaction between highly swirling velocity and turbulent field. Numerical analysis with computational fluid dynamics(CFD) was carried out to investigate the working fluid that flow into cyclone dust separator. Helical entry type was increasing flow rate compared with tangent entry type. And according to increasing pressure difference was increased fan power. But, helical entry type was high performance dust separator, in comparison with tangent entry type.

A study on Flow Characteristic inside Passenger's Compartment under Recirculation Cool vent mode using CFX (CFX를 이용한 내부순환모드에서의 자동차 내부 유동특성 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The flow characteristics under recirculation cool vent mode is numerically studied using commercial fluid dynamic code(CFX). For the reliable analysis, real vehicle and human FE model is employed in grid generation process. The geometrical location and shape of panel vent, and exhaust vent is set as that of real vehicle model. The flowrate of the working fluid is determined as 330CMH which is equivalent to 70 percent of maximum capacity of HVAC system. The high velocity regions are formed around 4 each panel vent. Because of the non-symmetrically located exhaust, non-uniform flow and partial backflow near the door trim is observed. Streaklines start from each panel vent show the flow pattern of the airflow in the passenger's compartment very well.

A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan (치수효과를 고려한 횡류홴의 작동특성연구)

  • Kim, H.S.;Kim, Youn J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.3 s.30
    • /
    • pp.26-32
    • /
    • 2005
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fall has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control the size and position, is the important cause of performance decrease. In this study, experiments we carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spiral, which is the important factor having an effect on it.

Design Characteristics of Non-Contact Type Seal for High Speed Spindle (고속주축용 비접촉 시일의 형상설계 연구)

  • 나병철;전경진;한동철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.56-63
    • /
    • 1997
  • Sealing of lubricant-air mixture in the high performance machining center is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. Velocity, pressure, turbulence intensity of profile is calculated to find more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic. This paper considers a design effect of sealing capability of non- contact type seals for high speed spindle and analyzes leakage characteristics to minimize a leakage 7 on the same sealing area.

  • PDF

Design Effect of Sealing Characteristics of Non-Contact Type Seal for High Speed Spindle (형상설계에 관한 고속주축용 비접촉 시일의 밀봉특성 연구)

  • 나병철;전경진;한동철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.610-614
    • /
    • 1996
  • Sealing of lubricat-air mixture in the high performance machining conte is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry, Velocity, pressure, turbulence intensity of profile is calculated to fina more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic, This paper arranges a geometry of mostly used non-contact type seal and analyzes leakage characteristics to minimize a leakage on the same sealing area.

  • PDF