• Title/Summary/Keyword: Velocity Vector

Search Result 543, Processing Time 0.021 seconds

A Motion Vector Recovery Method based on Optical Flow for Temporal Error Concealment in the H.264 Standard (H.264에서 에러은닉을 위한 OPtical Flow기반의 움직임벡터 복원 기법)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.148-155
    • /
    • 2006
  • For the improvement of coding efficiency, the H.264 standard uses new coding tools which are not used in previous coding standards. Among new coding tools, motion estimation using smaller block sizes leads to higher correlation between the motion vectors of neighboring blocks. This characteristic of H.264 is useful for the motion vector recovery. In this paper, we propose the motion vector recovery method based on optical flow. Since the proposed method estimates the optical flow velocity vector from more accurate initial value and optical flow region is limited to 16$\times$16 block size, we can alleviate the complexity of computation of optical flow velocity. Simulation results show that our proposed method gives higher objective and subjective video quality than previous methods.

A Study on Straight Line Trajectoties of Robot Mainpulator in Cartesian Space (직각좌표 공간에서 로봇 매니퓰레이터의 직선 궤적계획에 관한 연구)

  • Han, Sang-Wan;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.763-766
    • /
    • 1991
  • The moving of each axis in the robot manipulator can be represented with the motion of cartesian space. This paper shows the robot manipulator of the straight line trajectory planning algorithms in the cartesian space. The relation formulas between cartesian space and joint space are induced to accomplish a desired trajectory in the cartesian space and the velocity vector of sampling time in the cartesian space is transformed into the velocity vector of joint by the interpolation method. The error of trajectory in moving is removed by obtaining the real position for the present joint position and the desired distance is made by comparing the real position and the next position. Through the simple tests for suggested algorithms are confirmed the validity of algorithms.

  • PDF

A Study on Air Flow Characteristics of Mid-mower for Tractor(I) (트랙트용 미드 모어의 공기 유동 특성에 관한 연구(I))

  • Kim, Hae-Ji;Kim, Sam-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.27-35
    • /
    • 2015
  • Recently, the work machine is widely used in the agricultural machine and to use the power source of the tractor, the mower had been widely used as a working machine for mowing. The mower is classified as a front mower, mid-mower, and rear mower according to the mounting position of the lower frame on tractor. The main structure of mower is composed of deck, gearbox, and blade. This study concerns a study on air flow characteristics of Mid-mower for tractor. An air flow characteristics of the Mid-mower deck was evaluated by the velocity vector, flow path, and total air flow according to the number of revolutions. As the analysis results, The inner path of designed deck had no effect on air flow.

Development of High-resolution 3-D PIV Algorithm by Cross-correlation (고해상도 3차원 상호상관 PIV 알고리듬 개발)

  • Kim, Mi-Young;Choi, Jang-Woon;Lee, Hyun;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.410-416
    • /
    • 2001
  • An algorithm of 3-D particle image velocimetry(3D-PIV) was developed for the measurement of 3-D velocity field of complex flows. The measurement system consists of two or three CCD camera and one RGB image grabber. In this study, stereo photogrammetty was applied for the 3-D matching of tracer particles. Epipolar line was used to decect the stereo pair. 3-D CFD data was used to estimate algorithm. 3-D position data of the first frame and the second frame was used to find velocity vector. Continuity equation was applied to extract error vector. The algorithm result involved error vecotor of about 0.13 %. In Pentium III 450MHz processor, the calculation time of cross-correlation for 1500 particles needed about 1 minute.

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

The Study on Optimum Ventilation System during Long Tunnel Construction (굴착중인 장대터널 내 최적의 환기시스템에 관한 연구)

  • Lim, Han-Uk;Oh, Byung-Hwa
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.3-15
    • /
    • 2006
  • To determine the optimum ventilation systems during long tunnel excavation, the velocity vector profile and the contaminant's distribution at working place are studied using 2-D, 3-D numerical analysis. The main results can be summarized as follow; In case of long tunnels, blower-exhaust-mixture types which enable to use soft blast ducts is most appropriate in terms of ventilation and economical efficiency. Of the same ventilation types, ventilation efficiency has a difference according to blast ducts and the distance between fan and working place. The 3-D numerical result shows that arranging blower and exhaust ducts in the right and left corners of the tunnel respectively is effective to discharge contaminant. The result of the real measurement shows that CO concentration can be reduced to below 50 ppm, which is regulation value, as 16-minutes fan operation goes on.

  • PDF

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

A Study on the Five-hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

Flow Field Analysis of Smoke in a Rectangular Tunnel

  • Lee, Yong-Ho;Park, Sang-Kyoo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.679-685
    • /
    • 2009
  • In order to simulate a smoke or poisonous gas emergency in a rectangular tunnel and to investigate a better way to exhaust the smoke, the characteristics of smoke flow have been analyzed using flow field data acquired by Particle Image Velocimetry(PIV). Olive oil has been used as tracer particles with the kinematic viscosity of air, $1.51{\times}10^{-5}\;m^2/s$. The investigation has done in the range of Reynolds number of 1600 to 5333 due to the inlet velocities of 0.3 m/s to 1 m/s respectively. The average velocity vector and instantaneous kinematic energy fields with respect to the three different Reynolds numbers are comparatively discussed by the Flow Manager. In general, the smoke flow becomes more disorderly and turbulent with the increase of Reynolds number. Kinematic energy in the measured region increases with the increase of Reynolds number while decreasing at the leeward direction about the outlet region.

Performance Analysis of an Explicit Guidance Scheme for a Launch Vehicle (발사체 직접식 유도법의 유도성능 분석)

  • 최재원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.97-106
    • /
    • 1998
  • In this Paper, a fuel minimizing closed loop explicit inertial guidance algorithm for orbit injection of a rocket is developed. In the formulation, the fuel burning rate and magnitude of thrust are assumed constant. The motion of rocket is assumed to be subject to the average inverse-square gravity, but negligible effects from atmosphere. The optimum thrust angle to obtain a given velocity vector in the shortest time with minimizing fuel consumption is first determined, and then the additive thrust angle for targeting the final position vector is determined by using Pontryagin's maximum principle. To establish real time processing, many algorithms of onboard guidance software are simplified. The explicit guidance algorithm is simulated on the 2nd-stage flight of the N-1 rocket developed in Japan. The results show that the explicit guidance algorithm works well in the presence of the maximum $\pm$10% initial velocity and altitude errors, and exhibits better performance than the open-loop program guidance. The effects of the guidance cycle time are also examined.

  • PDF