• Title/Summary/Keyword: Velocity Variation

Search Result 1,567, Processing Time 0.031 seconds

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

Analysis of Flow Characteristics in Upstream Channel depending on Water Gate Operation of Nakdan Multi Functional Weir (수문운영에 따른 낙단보 상류하도 흐름특성 해석)

  • Moon, Sang-Chul;Park, Ki Bum;Ahn, Seung-Seop
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.491-504
    • /
    • 2016
  • This study, examines the flow characteristics of upstream channel depending on water gate operation of Nakdan Multi-fuctional weir. The specific purpose of this study are to simulate the variation of flow velocity depending on the operation of the weir using 1-dimensional hydraulic model, HEC-RAS, and compare it with observed velocity. For discharge conditions from $50m^3/s$ to $3,500m^3/s$, it is observed that the velocity of upstream channel is almost constant, whereas for probability flood discharge, the velocity and froude number are increased as the discharge values are increased. The velocity values for downstream boundary condition EL, 40.0 m are more decreased than those for EL. 40.5m. From comparison on the variation of water stage depending on water gate operation, it is observed that the stage values are almost constant for discharges below $300m^3/s$, whereas 5 cm to 20 cm for discharges over $700m^3/s$. Flow velocity at streamflow gauging station. Nakdong, is decreased by more than 875% after installing the weir. The results obtained from this study indicate that the velocity of upstream channel is decreased and the discharge and velocity of downstream channel are significantly varied after installing the weir.

Effect of the Liquid Circulation Velocity on the Biofilm Development in an IFBBR (역 유동층 생물막 반응기에서 액체순환속도가 생물막에 미치는 영향)

  • 김동석;윤준영
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 1994
  • Effect of the liquid circulation velocity on the biofilm development was investigated in an inverse fluidized bed biofilm reactor(IFBBR). To observe the effect of the influent COD concentration on biofilm simultaneously, the influent COD value was adjusted to 1000mg/1 f for 1st reactor, and 2500mg/l for 2nd reactor. The liquid circulation velocity was adjusted by controlling the initial liquid height. As the liquid circulation velocity was decreased, the settling amount of biomass was increased and the amount of effluent biomass was decreased. Since the friction of liquid was decreased by the decrease of liquid circulation velocity, the biofilm thickness was increased and the biofilm dry density was decreased. In the 1st reactor the SCOD removal efficiency was constant regardless of the variation of the liquid circulation velocity, but it was increased by the decrease of the liquid circulation velocity because of more biomass population in 2nd reactor.

  • PDF

Analysis of Hydraulic Characteristics by Sediment Protection Weir on Natural River Estuary (자연하도 하구부의 방사보에 의한 수리학적특성 해석)

  • Ahn, Seung-Seop;Choi, Yun-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.51-60
    • /
    • 2001
  • This study examines the effects of removal of the sediment protection weir at Taehwa river mouth on hydraulic and around river environment considering the fact that the effects of the sediment protection weir which is installed to protect water level drop of Ulsan harbor caused by sediments according to flood in Taehwa river, Dong-chun, and so forth may add water quality contamination by flow stagnance in normal and drought period and accumulation of pollutants. The result is as follows. First, it is estimated from the examination of variation characteristics water depth and level for Taehwa river before and after removal of the sediment protection weir that about 0.01m of water depth down according to removal of the sediment protection weir occurs when low flow runs between the sediment protection weir which is located about 2.3km away from the estuary and Samho-gyo which is about 9.0km away from the sediment protection weir, and about 0.01~0.56m(directly upstream point of the sediment protection weir 0.56m, Myongchon-gyo 0.14m, Ulsan-gyo 0.03m, and Taehwa-gyo 0.02m) downs when design flood flows between the sediment protection weir and the upstream of Taehwa-gyo which is 10km away from the sediment protection weir. Therefore, it is thought that variation of hydraulic characteristics of water depth down and so on according to removal of the sediment protection weir is slight because water depth variation is only about 1cm between directly upstream point of the sediment protection weir and Samho-gyo. Next, it is estimated from the examination of variation characteristics of flow velocity for Taehwa river before and after removal of the sediment protection weir that about 0.0lm/s of flow velocity increase occurs between the directly upstream point of the sediment protection weir which is about 2.4km away from the estuary and the directly upstream point of Samho-gyo when low flow runs, and about 0.01~0.44m/s increases between the sediment protection weir and Samho-gyo when design flood flows. Therefore, riverbed erosion by the increased flow velocity is concerned but it is thought that the concern about riverbed erosion is not great because the mean velocity is about 0.07~1.36m/s when low flow runs, and about 1.02~2.41m/s when design flood flows for the sector which experiences the flow velocity variation.

  • PDF

Implementation of Analog Signal Processing ASIC for Vibratory Angular Velocity Detection Sensor (진동형 각속도 검출 센서를 위한 애널로그 신호처리 ASIC의 구현)

  • 김청월;이병렬;이상우;최준혁
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.65-73
    • /
    • 2003
  • This paper presents the implementation of an analog signal-processing ASIS to detect an angular velocity signal from a vibrator angular velocity detection sensor. The output of the sensor to be charge appeared as the variation of the capacitance value in the structure of the sensor was detected using charge amplifiers and a self oscillation circuit for driving the sensor was implemented with a sinusoidal self oscillation circuit using the resonance characteristics of the sensor. Specially an automatic gain control circuit was utilized to prevent the deterioration of self-oscillation characteristics due to the external elements such as the characteristic variation of the sensor process and the temperature variation. The angular velocity signal, amplitude-mod)Hated in the operation characteristics of the sensor, was demodulated using a synchronous detection circuit. A switching multiplication circuit was used in the synchronous detection circuit to prevent the magnitude variation of detected signal caused by the amplitude variation of the carrier signal. The ASIC was designed and implemented using 0.5${\mu}{\textrm}{m}$ CMOS process. The chip size was 1.2mm x 1mm. In the experiment under the supply voltage of 3V, the ASIC consumed the supply current of 3.6mA and noise spectrum density from dc to 50Hz was in the range of -95 dBrms/√Hz and -100 dBrms/√Hz when the ASIC, coupled with the sensor, was in normal operation.

Effect of Pressure on Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier for Chemical Looping Combustor (케미컬루핑 연소를 위한 산소전달입자의 최소유동화속도 및 고속유동층 전이유속에 미치는 압력의 영향)

  • KIM, JUNGHWAN;BAE, DAL-HEE;BAEK, JEOM-IN;PARK, YEONG-SEONG;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • To develop a pressurized chemical looping combustor, effect of pressure on minimum fluidization velocity and transition velocity to fast fluidization was investigated in a two-interconnected pressurized fluidized bed system using oxygen carrier particle. The minimum fluidization velocity was measured by bed pressure drop measurement with variation of gas velocity. The measured minimum fluidization velocity decreased as the pressure increased. The transition velocity to fast fluidization was measured by emptying time method and decreased as the pressure increased. Gas velocity in the fuel reactor should be greater than the minimum fluidization velocity and gas velocity in the air reactor should be greater than the transition velocity to fast fluidization to ensure proper operation of two interconnected fluidized bed system.

A Study on Radial Velocity Transformation and Uncertainty Propagation (시선속도 변환과 불확도 전파에 관한 연구)

  • Ryu, Chung-Ho;Hwang, Gyu-Hwan;Jang, Yong-Sik;Kim, Moon-Ki;Choi, Ik-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.199-206
    • /
    • 2013
  • In general, radial velocity of a target can be obtained by acquiring doppler frequency shift in case of a doppler radar, or can be obtained by acquiring range rate in case of a pulse radar. Then radial velocity can be converted to tangential velocity using aspect angle or position variation per unit time. These two ways have the same meaning in physically, but result in different uncertainty finally. In this paper, it is described not only the two transformation procedures to calculate tangential velocity from radar measurement data, but also the result of combined uncertainty comparison between these two procedures.

Study on the Settling Process of Cohesive Sediment (점착성 퇴적물의 침강특성에 관한 연구)

  • Sin, Dong-Su;Bae, Gi-Seong
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.111-120
    • /
    • 1998
  • Laboratory settling experiments (column, recirculating flume) were conducted for further understanding of the physical processes of cohesive sediment transport. \In still water experiments, the growth rate of flocculation is dependent upon the initial suspended concentration. Consequently, the settling velocity increases with concentration of flees. In flocculation settling regime, the exponent n in the settling velocity, $w_s=kC^n$, for Nakdong estuary mud was obtained empirically. The exponents were found to be 1.33, and 1.06 for the initial suspended concentrations of 1 g/i and 3 g/t, respectively. In flowing water, experiments for the median settling velocity with Nakdong mud in a recirculating flume were conducted. Settling velocity was found to depend much more strongly on the current velocity than initial concentrations. The temporal variation of suspended concentration increases as current velocity decreases.

  • PDF

Study of Cure Properties in Photopolymer for Stereolithography using Various Laser Bean Size (레이저빔 직경변화에 대한 광경화성 수지의 경화특성 고찰)

  • 이은덕;김준안;백인환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1089-1092
    • /
    • 2001
  • In the stereolithography process, build parameters are laser power, scan velocity, scan width, bean diameter, layer thickness and so on. These values are determined according to product accuracy and build time. Build time can be reduced by improving of scan velocity, laser power, layer thickness, hatching space and so on. But variation of these parameters influence part accuracy, surface roughness, strength. This paper observed cure properties in various beam diameter. In order to examine these, relationships of scan velocity and cure depth, scan velocity and cure width according to various beam diameter in one scan line are measured. And cure thickness is measured according to beam diameter and scan velocity in scan surface of one layer. For reduction of build time, beam diameter and scan velocity is proposed in stereolithography process.

  • PDF

A study of seismic velocity and amplitude variation around underground cavity (지하 공동에 대한 탄성파 속도 및 진폭 변화에 관한 연구)

  • Lee, Sang-Chul;Oh, Seokhoon;Sohn, Kwon-Ik;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.9-14
    • /
    • 2007
  • This study was designated to clarify the aspect of the wave propagation around the cavity. The change of traveltime and amplitude of the seismic wave was observed according to the various wave velocities of the cavity. The seismic wave detour or penetrate the cavity depending on the seismic velocity of the in-filled material. Generally, seismic wave detours toward high velocity zone around the cavity, and when the velocity of the cavity material reaches to 80 % of the base rock, the wave penetrates the cavity. The traveltime of the detouring seismic wave is not sensitive to the change of the cavity velocity, but as the velocity of the cavity increases, the fall of the amplitude was reduced. The penetrating wave showed the steeply increasing amplitude due to the reiteration of the detouring wave.

  • PDF