• Title/Summary/Keyword: Velocity Trajectory

Search Result 451, Processing Time 0.021 seconds

On Output Feedback Tracking Control of Robot Manipulators with Bounded Torque Input

  • Moreno-Valenzuela, Javier;Santibanez, Victor;Campa, Ricardo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • Motivated by the fact that in many industrial robots the joint velocity is estimated from position measurements, the trajectory tracking of robot manipulators with output feedback is addressed in this paper. The fact that robot actuators have limited power is also taken into account. Let us notice that few solutions for the torque-bounded output feedback tracking control problem have been proposed. In this paper we contribute to this subject by presenting a theoretical reexamination of a known controller, by using the theory of singularly perturbed systems. Motivated by this analysis, a redesign of that controller is introduced. As another contribution, we present an experimental evaluation in a two degrees-of-freedom revolute-joint direct-drive robot, confirming the practical feasibility of the proposed approach.

Numerical Ballistic Modeling in Game Engines

  • YoungBo Go;YunJeong Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.2
    • /
    • pp.117-126
    • /
    • 2023
  • To improve the overall performance and realism of your game, it is important to calculate the trajectory of a projectile accurately and quickly. One way to increase realism is to use a ballistic model that takes into account factors such as air resistance, density, and wind when calculating a projectile's trajectory. However, the more these factors are taken into account, the more computationally time-consuming and expensive it becomes, creating a trade-off between overall performance and efficiency. Therefore, we present an optimal solution to find a balance between ballistic model accuracy and computation time. We perform ballistic calculations using numerical methods such as Euler, Velocity Verlet, RK2, RK4, and Akima interpolation, and measure and compare the computation time, memory usage (RSS, Resident Set Size), and accuracy of each method. We show developers how to implement more accurate and efficient ballistic models and help them choose the right computational method for their numerical applications.

Extended Feedback Control based on Impulse Response for Lane Change of Autonomous Driving Vehicle (자율 주행 차량의 차선 변경을 위한 충격 응답 기반 상태 확장 되먹임 제어)

  • Sangyoon Kim;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • This paper presents extended state feedback control based on impulse response for lane change of autonomous driving vehicle. The triple characteristic root of path tracking system and longitudinal velocity determine feedback gains. We suggest a resemblance of impulse response curve of the system and lane change trajectory of the vehicle. The root affects the duration of lane change and lateral acceleration. The effect of limited lateral acceleration and saturation of steering angle will be analyzed and discussed. Finally, simulation results will show the trajectory of lane change based on impulse response under limitation of lateral acceleration.

Performance Analysis of the Active SAS Autofocus Processing for UUV Trajectory Disturbances Compensation (수중무인체 궤적교란 보상을 위한 능동 SAS 자동초점처리 성능 분석)

  • Kim, Boo-il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.215-222
    • /
    • 2017
  • An active synthetic aperture sonar mounted on small UUV is generated various trajectory disturbances in the traveling path by the influence of external underwater environments. That is the phase mismatch occurs in the synthetic aperture processing of the signals reflected from seabed objects and fetches the detection performance decreases. In this paper, we compensated deteriorated images by the active SAS autofocus processing using DPC and analyzed the effects of detection performance when the periodic trajectory disturbances occur in the side direction at a constant velocity and straight movement of UUV. Through simulations, the deteriorated images according to the periodic disturbance magnitudes and period variations in the platform were compensated using difference phases processing of the overlapping displaced phase centers on the adjacent transmitted ping signals, and we conformed the improved performance characteristics of azimuth resolution and detection images at 3dB reference point.

A Precise Trajectory Prediction Method for Target Designation Based on Cueing Data in Lower Tier Missile Defense Systems (큐잉 데이터 기반 하층방어 요격체계의 초고속 표적 탐지 방향 지정을 위한 정밀 궤적예측 기법)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun;Kwon, Jae-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.523-536
    • /
    • 2013
  • A recent air defense missile system is required to have a capability to intercept short-range super-high speed targets such as tactical ballistic missile(TBMs) by performing engagement control efficiently. Since flight time and distance of TBM are very short, the missile defense system should be ready to engage a TBM as soon as it takes an indication of the TBM launch. As a result, it has to predict TBM trajectory accurately with cueing information received from an early warning system, and designate search direction and volume for own radar to detect/track TBM as fast as it can, and also generate necessary engagement information. In addition, it is needed to engage TBM accurately via transmitting tracked TBM position and velocity data to the corresponding intercept missiles. In this paper, we proposed a method to estimate TBM trajectory based on the Kepler's law for the missile system to detect and track TBM using the cueing information received before the TBM arrives the apogee of the ballistic trajectory, and analyzed the bias of prediction error in terms of the transmission period of cueing data between the missile system and the early warning system.

Navigation System of UUV Using Multi-Sensor Fusion-Based EKF (융합된 다중 센서와 EKF 기반의 무인잠수정의 항법시스템 설계)

  • Park, Young-Sik;Choi, Won-Seok;Han, Seong-Ik;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.562-569
    • /
    • 2016
  • This paper proposes a navigation system with a robust localization method for an underwater unmanned vehicle. For robust localization with IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and depth sensors, the EKF (Extended Kalman Filter) has been utilized to fuse multiple nonlinear data. Note that the GPS (Global Positioning System), which can obtain the absolute coordinates of the vehicle, cannot be used in the water. Additionally, the DVL has been used for measuring the relative velocity of the underwater vehicle. The DVL sensor measures the velocity of an object by using Doppler effects, which cause sound frequency changes from the relative velocity between a sound source and an observer. When the vehicle is moving, the motion trajectory to a target position can be recorded by the sensors attached to the vehicle. The performance of the proposed navigation system has been verified through real experiments in which an underwater unmanned vehicle reached a target position by using an IMU as a primary sensor and a DVL as the secondary sensor.

Characteristics of the Starting Flow of a Rushton Turbine Mixer (러쉬톤 교반기의 초기 비정상 유동 특성)

  • Park, Gyeong-Hyeon;Kim, Gyeong-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1543-1551
    • /
    • 2001
  • The characteristics of starting flow of a six-blade Rushton turbine mixer were investigated by using a cinematic Particle Image Velocimetry technique. The flows were quantified by measurements of velocity fields with a 4 ms time interval for a blade rotational speed of 100 r.p.m, so that the turbine Reynolds number(ND$^2$/ ν) was fixed to 6,960. The radial shedding of the trailing vortices starts from passing four blades after the beginning of rotation. It clearly shows that the vortex pairing phenomena caused by the interactions between trailing cortices firm consequtive blades. The average convection velocity of the radial flow is found to be 28 % of the tip velocity. The starting flow seems to arrive at a steady state after 8 revolutions in this study, which corresponds nearly one circulation through the bulk flow trajectory with the average radial convection velocity.

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

Decentralized Adaptive Controller Design for Manipulators (매니퓰레이터의 비집중 적응 제어기 설계)

  • Lyou, Joon;Hwang, Suk-Young
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.31-35
    • /
    • 1992
  • This paper presents a decentralized adaptive controller design for a robot manipulator to track the given desired trajectory in the joint space. The controller is of distributed structure and does not require the complex manipulator dynamic model, thereby it is computationally very efficient. Each joint is independently controlled by a PID feedback part and a velocity-acceleration feedforward part. Simulation results for a two-link direct drive manipulator conform that the proposed decentralized scheme is feasible.

  • PDF

하이브리드형 로봇의 동역학적 모델링과 해석에 관한 연구

  • 전승수;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.315-319
    • /
    • 1993
  • A dynamic modeling, analysis, and optimum design issuess for the Hybrid type of robot are addressed. The dynamic modeling can be used to describe acceleration and velocity properties of the system explicitly in terms of the actuating forces is coded in C language based on the kinematic influence coefficients(KIC). By using this modeling simulation, the actuating forces needed for the robot follows the given trajectory are calculated. Also, for the design concept, the optimum geometric configuration of the system that minimizes the maximum actuating forces is found by using the optimization techique.