• Title/Summary/Keyword: Velocity Suppression

Search Result 106, Processing Time 0.026 seconds

A STUDY on FOREST FIRE SPREADING ALGORITHM with CALCULATED WIND DISTRIBUTION

  • Song, J.H.;Kim, E.S.;Lim, H.J.;Kim, H.;Kim, H.S.;Lee, S.Y
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.305-310
    • /
    • 1997
  • There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.

  • PDF

A Study on the Heat Flow Analysis of Infra-Red Signature Suppression System for Naval Ship (함정 적외선 신호저감 장치의 열 유동해석 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.740-746
    • /
    • 2017
  • Infrared signatures emitted from hot exhaust gases generated by the internal combustion engine and generator of naval ships and from the metal surfaces of the funnel have become the targets of infrared homing missiles, which is the main cause of a reduced survivability of naval ships. The infrared signatures from the exhaust gas and the metal surface of a funnel can be reduced by installing an infrared signature suppression (IRSS) system on a ship. The IRSS system consists of three parts: an eductor that generates turbulent flow of the exhaust gas, a mixing tube that mixes the exhaust gas with ambient air, and a diffuser that forms an air film using the pressure difference between the inside and outside air. As a basic study to develop an IRSS system using domestic technology, this study analyzed the model test conditions of an IRSS system developed by an overseas engineering company and installed on a domestic naval ship, and a numerical heat-flow analysis was conducted based on the results of the aforementioned analysis. Numerical heat-flow analysis was performed using a commercial numerical-analysis application, and various turbulence models were considered. As a result, the temperature and velocity of the exhaust gas at the educator inlet and diffuser outlet and that of the metal surface of the diffuser were measured, and found to agree well with the measurement results of the model test.

Characteristic of $LiNbO_3$ Domain Inversion and Fabrication of Electrooptic Device Application using Domain Reversal ($LiNbO_3$ 기판의 도메인 반전 특성과 이를 이용한 기능성 광변조기의 제작)

  • Jeong, W.J.;Kim, W.K.;Yang, W.S.;Lee, H.M.;Kwon, S.W.;Song, M.K.;Lee, H.Y.
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.3 s.357
    • /
    • pp.20-25
    • /
    • 2007
  • The periodic domain-inversion in the selective areas of $Ti:LiNbO_3$ Mach-Zender waveguides was performed and band-pass modulators and single sideband (SSB) modulators were fabricated by using domain-reversal. The domain wall velocity was precisely controlled by real-time analysis of a poling-induced response current under an applied voltage. The domain wall velocity was significantly affected by the crystal orientation of the domain wall propagation which influenced the final domain geometry. In a certain case, the decomposition of $LiNbO_3$ crystal was observed, for example, under the condition of too fast domain wall propagation. The fabricated band-pass modulator with a periodic domain-inversion structure showed the maximum modulation efficiency at 30.3 GHz with 5.1 GHz 3dB-bandwidth, and SSB modulator was measured to show 33 dB USB suppression over LSB at 5.8 GHz RF.

A Numerical Study on the Effects of the Wind Velocity and Height of Grassland on the flame Spread Rate of Forest Fires (초지화재 발생시 바람의 속도 및 초본의 높이가 화염전파에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Sung-Yong;Kim, Dong-Hyun;Ryou, Hong-Sun;Lee, Sung-Hyuk
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.252-257
    • /
    • 2008
  • With the rapid exuberant growth of the forest, the number and size of forest fires and the costs of wildland fires have increased. The flame spread rate of forest fires is depending on the environmental variables like the wind velocity, moisture of grassland, etc. If we know the effects of the environmental variables on the fire growth, it is useful for wildland fiIre suppression. But analysis of the spread rate of wildland fire for these effects have not been established. In this study, the effects of wind velocity and height of grassland fuel have been investigated using the WFDS which is developed at NIST for prediction of the spread of wildland fires. The results showed that the relation between the height of the fuel and the spread rate of the head fires is, and the spread rates related to the wind velocity are predicted 17% less than the experimental results of Australia. When the wind velocity is over 7.5m/s, the concentration of pyrolyzed gas phase fuel is getting low due to fast movement of pyrolyzed gas, the flame spread rate becomes slow.

Effect of the Statistical Droplet Parcel on Numerical Simulation of Sprinkler Spray (스프링클러 분무 해석에 영향을 미치는 통계적액적군집의 영향)

  • Kim, Sung-Chan;Lee, Sang-Woo;Park, Won-Ju
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.363-370
    • /
    • 2008
  • The present study has been performed to investigate the effect of statistical number of droplets on the simulation of the sprinkler spray using fire field model. In order to simulate the sprinkler spray characteristics, the present study uses NIST Fire Dynamics Simulator version 5.2. A group of Lagrangian particle with similar droplet characteristics, such as diameter, velocity, temperature and so on, is represented by parcel concept to decrease the total number of droplets tracked in the simulation. The present study introduces a new parameter to represent the ratio between real number of droplets and computational parcels. The dependency of the number of parcels on the fire suppression characteristics and spray patterns is quantitatively examined for different ratio between the real number of droplets and computational parcels.

  • PDF

Vibration Suppression Control for a Twin-Drive Geared Mechanical System with Backlash: Effects of Model-Based Control

  • Itoh, Masahiko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1392-1397
    • /
    • 2003
  • This paper deals with a control technique of eliminating the transient vibration of a twin-drive geared mechanical system. This technique is based on a model-based control in order to establish the damping effect at the driven machine part. The control model is composed of reduced-order electrical and mechanical parts. This control model estimates a load speed converted to the motor shaft. The difference between the estimated load speed and the motor speed is calculated dynamically and it is added to the velocity command to suppress the transient vibration generated at the load. This control technique is applied to a twin-drive geared system with backlash. In the previous work, the performance of this control method is examined by simulations. In this paper, the effectiveness of this control technique is verified by experiments. The settling time of the residual vibration generated at the loading inertia can be shortened down to about 1/2 of the uncompensated vibration level.

  • PDF

Boundary Control of Container Crane;Two-Stage Control of a Container Crane as Nonflexible and Flexible Cable

  • Park, Hahn;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.153-158
    • /
    • 2004
  • In this paper, we proposed a two-stage control of the container crane. The first stage control is time-optimal control for the purpose of fast trolley traveling. With suitable trolley velocity patterns, the sway which is generated during trolley moving is minimized. At the second stage control feedback control law is investigated for the quick suppression of residual vibration after the trolley motion. For more practical system, the container crane system is modeled as a partial differential equation (PDE) system with flexible cable. The dynamics of the cable is derived as a moving system with tension caused by payload using Hamilton's principle for the systems. A control law based upon the Lyapunov's method is derived. It is revealed that a time-varying control force and a suitable passive damping at the actuator can successfully suppress the transverse vibrations.

  • PDF

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.265-270
    • /
    • 2001
  • This study presents a feedback control methodology for suppression of the vortex shedding from a circular cylinder in a uniform flow. A rotational oscillation is applied as a controlled forcing and the lift coefficient ($C_L$) is used as a feedback signal. A feedback control concept is made based on the phase relation between the rotation velocity and $C_L$ at 'lock-on', The phase between the forcing and the vortex formation is changed $180^{\circ}$ from the phase of enhancing the lock-on state. This concept is examined by solving the Van del Pol equation. The results are satisfactory.

  • PDF

An Experimental Study on the Flow Stabilization in the Downstream Region of a Butterfly-Type Valve (버터플라이 밸브 하류 유동의 안정화에 관한 연구)

  • Park, Sang-Won;Lee, Sang-U
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1417-1427
    • /
    • 2000
  • A flow stabilizer, which is made of a honeycomb and three different mesh screens, is located downstream of a butterfly-type valve, for the reduction of flow disturbances behind the valve. Mean flow and turbulence measurements as well as flow visualizations are conducted in the downstream region of the deepens the non-uniformity of the streamwise velocity component and turbulence. The mesh screens considerably reduce the turbulence and enhance the uniformity of mean velocities. The combination of the honeycomb and the three mesh screens results in an efficient reduction in the flow disturbances. In addition, the flow stabilizer proves to have a good performance in the suppression of turbulence at a short distance.