• Title/Summary/Keyword: Velocity Slip

Search Result 369, Processing Time 0.023 seconds

A Study on Fluid Flow Characteristic In a Microchannel (미세 유로에서의 유동 특성에 관한 연구)

  • Kim, Hyung-Woo;Oh, Jae-Geun;Jeong, Si-Young;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3282-3285
    • /
    • 1999
  • Fluid characteristics at microscale were tried to be solved in this paper by showing how they deviate with conventional flow governing equations. (e.g. Navier-Stokes Equation) In earlier studies, this deviation phenomena was caused because of omitting no slip flow condition, micropolar effect and EDL(Electric Double Layer)effect of fluid which are usually negligible at macroscaled phenomena. The characteristics of fluid flow were tried to be studied by measuring pressure difference of specified length of the channels using the almost squared micromachined channels. By acquiring pressure difference, we could drive different values (viscosity, flow velocity. etc) from it and these data will be compared with macroscaled flow characteristics. As making microchannel is not easy work and that our knowledge is at mere stage, we had to fail to make it in this time. The hardest thing in this work is to make a hole which is directly connected with channel. The more efficient and easy way of making microchannel is proposed in this paper.

  • PDF

A New Wheel Arrangement by Dynamic Modeling and Driving Performance Analysis of Omni-directional Robot (다중이동로봇의 동적 모델링 및 구동성능 분석을 통한 새로운 바퀴 배치 제안)

  • Shin, Sang Jae;Kim, Haan;Kim, Seong Han;Chu, Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • Omni-directional robot is a typical holonomic constraint robot that has three degrees of freedom movement in 2D plane. In this study, a new omni-directional robot whose wheels are arranged in radial directions was proposed to improve driving performance of the robot. Unlike a general omni-directional robot whose wheels were arranged in a circumferential direction, moments do not arises in the proposed robot when the robot travels in a straight line. To analyze driving performance, dynamic modeling of the omni-directional robot, which considers friction and slip, was carried out. By friction measurement experiments, the relationship between dynamic friction coefficient and relative velocity was derived. Dynamic friction coefficient according to the angle difference between robot travel direction and wheel rotation direction was also obtained. By applying these results to the dynamic model, driving performance of the robot was calculated. As a result, the proposed robot was 1.5 times faster than the general robot.

Tribology of friction materials containing different metal fibers (마찰재에 함유된 금속섬유의 종류에 따른 마찰 특성)

  • Ko, Kil-Ju;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.55-63
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated using a pad-on-disk type friction tester. Two different materials(gray iron and Al-MMC)) were used for disks rubbing against the friction materials. Results from ambient temperature tests revealed that the friction material containing Cu fibers sliding against cast iron disk showed a distinct negative ${\mu}$-ν (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speed. The negative ${\mu}$-ν relation was not observed when the Cu-containing friction materials were rubbed against the. Al-MMC counter surface. As applied loads increased, friction materials showed higher friction coefficients comparatively. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and the steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.

  • PDF

An Experiment of SCR System On-board Ship

  • Choi Jae-Sung;Cho Kwon-Hae;Lee Jae-Hyun;Lee Jin-Wook;Kim Jeong-Gon;Jang Sung-Hwan;Yang Hee-Sung;Ko Jun-Ho;Park Ki-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.306-312
    • /
    • 2005
  • IMO $NO_x$ levels are generally possible to meet by means of primary on-engine measures. Further significant follow-on reductions are likely to require a secondary after-treatment technique. SCR(Selective Catalytic Reduction) technology is used almost exclusively for $NO_x$ removal in stationary combustion systems. In order to develop a practical SCR system for marine application on board ship, a primary SCR system using urea was made. The SCR system was set up on the ship, 'HANNARA' as a test vessel. employed a two-stroke cycle diesel engine as main propulsion, which is a training ship of Korea Maritime University. The purpose of this paper is to report the results about the basic effects of the below system parameters, The degree of $NO_x$ removal depends on some parameters, such as the amount of urea solution added, space velocity, reaction gas temperature and activity of catalyst.

Parametric Study for the Squeal Noise Reduction of an Automobile Water Pump (자동차용 워터펌프의 스퀼소음 저감을 위한 영향도 분석)

  • Kim, Bohyeong;Jung, W.;Baek, H.;Kang, D.;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.7
    • /
    • pp.624-630
    • /
    • 2013
  • In this study, a parametric study is performed to investigate the squeal noise of an automobile water pump. The squeal noise studied in this paper is generated by the self-excited torsional resonance of the rotating shaft, and this noise is related to the stick-slip phenomenon of the mechanical seal in the water pump. The mechanical seal friction has the characteristics of the negative velocity-gradient. The equations of motion of multiple-degree-of-freedom torsional vibration model is constructed by the Holzer's method and then the equation is transformed to an equivalent single-degree-of-freedom torsional resonance simulation model. A squeal noise criteria is determined by the simulation model to perform the parametric study. The design parameters(the mass moment of inertia of the pulley, the mass moment of inertia of the impeller, the length of the shafts, the radius of the shafts, spinning speed of the shafts, the position of the mechanical seal, radius of the mechanical seal, and normal load of the mechanical seal) are investigated to confirm the stability for the squeal noise.

Estimation of the Cutting Torque Without a Speed Sensor During CNC Turning

  • Kwon, Won-Tae;Hong, Ik-Jun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2205-2212
    • /
    • 2005
  • In this paper, the cutting torque of a CNC machine tool during machining is monitored through the internet. To estimate the cutting torque precisely, the spindle driving system is divided into two parts: electrical induction motor part and mechanical part. A magnetized current is calculated from the measured three-phase stator currents and used for the total torque estimation generated by a spindle motor. Slip angular velocity is calculated from the magnetized current directly, which gets rid of the necessity of a spindle speed sensor. Since the frictional torque changes according to the cutting torque and the spindle rotational speed, an experiment is adopted to obtain the frictional torque as a function of the cutting torque and the spindle rotation speed. Then the cutting torque can be calculated by solving a $2^{nd}$ order difference equation at a given cutting condition. A graphical programming method is used to implement the torque monitoring system developed in this study to the computer and at the same time monitor the torque of the spindle motor in real time through the internet. The cutting torque of the CNC lathe is estimated well within an about $3\%$ error range in average in various cutting conditions.

Experimental and numerical study on pre-peak cyclic shear mechanism of artificial rock joints

  • Liu, Xinrong;Liu, Yongquan;Lu, Yuming;Kou, Miaomiao
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.407-423
    • /
    • 2020
  • The pre-peak cyclic shear mechanism of two-order asperity degradation of rock joints in the direct shear tests with static constant normal loads (CNL) are investigated using experimental and numerical methods. The laboratory testing rock specimens contains the idealized and regular two-order triangular-shaped asperities, which represent the specific geometrical conditions of natural and irregular waviness and unevenness of rock joint surfaces, in the pre-peak cyclic shear tests. Three different shear failure patterns of two-order triangular-shaped rock joints can be found in the experiments at constant horizontal shear velocity and various static constant normal loads in the direct and pre-peak cyclic shear tests. The discrete element method is adopted to simulate the pre-peak shear failure behaviors of rock joints with two-order triangular-shaped asperities. The rock joint interfaces are simulated using a modified smooth joint model, where microscopic scale slip surfaces are applied at contacts between discrete particles in the upper and lower rock blocks. Comparing the discrete numerical results with the experimental results, the microscopic bond particle model parameters are calibrated. Effects of cyclic shear loading amplitude, static constant normal loads and initial waviness asperity angles on the pre-peak cyclic shear failure behaviors of triangular-shaped rock joints are also numerically investigated.

An Analytical Study on the Gas-Solid Two Phase Flows

  • Sun, Jianguo;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

SIMULATION OF LID DRIVEN CAVITY FLOW WITH DIFFERENT ASPECT RATIOS BY MULTI-RELAXATION-TIME LATTICE BOLTZMANN METHOD (다중완화시간 격자 볼츠만기법을 이용한 다양한 종횡비의 리드드리븐 공동유동 수치해석연구)

  • Huang, Tingting;Song, Juhun;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.42-51
    • /
    • 2020
  • This study performs a numerical simulation of lid driven rectangular cavity flow with different aspect ratios of k = 0.5 to 4 under Reynolds 100, 1,000, 10,000 by using multi-relaxation time (MRT) Lattice Boltzmann Method (LBM). In order to achieve better convergence, well-posed boundary conditions in the domain should be defined such as no-slip condition on side and bottom solid wall surfaces and uniform horizontal velocity on the top of the cavity. This study focuses on the flow inside different shape of rectangular cavity with the aim to observe the effect of the Reynolds number and aspect ratio on the flow characteristics and primary/secondary vortex formation. In order to validate the study, the results have been compared with existing works. The result shows that the Reynolds number and the aspect ratio both has substantial effects on the flow inside the lid-driven rectangular cavity.

Embankment Stability under Rapid Drawdown (수위급강하(水位急降下)에 따른 제체(堤體)의 사면안정해석(斜面安定解析))

  • Shin, Bang Woong;Park, Jae Gwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.4
    • /
    • pp.1-8
    • /
    • 1985
  • Stability analysis of the embankment as to water level varation is the most important problem in the safety of the slope because the stress of embankment inside varies as to drawdown of seepage line. Especially when the water level is rapidly drawdown, because the flow direction of the free surface changes the toe of embankment, the factor of safety comes to small, therefore the embankment is dangered. For the purpose of studing these phenomena, the experimental models are built with sand in the laboratory. In the experimental consideration, the falling seepage line and the shape of failure are measured. This paper intends to study the failure slip surface, the relationship between the factor of safety and drawdown velocity, and hydraulic gradient. The results of the experimental study are summarized as follows; 1. Owing to the drawdown of free surface, sliding failure occurred in the upstream fill, the height of failure is 5~10, 9~15, and 13~21(cm) in each model. 2. In consideration of the distribution of pore water pressure Table-5 shows each factor of safety. In the relationship between the drawdown velocity and the factor of factor it's velocity should be limited to 0.21~0.28 (cm/sec), according to each models. In the relationship between the factor of safety and the hydraulic gradient within the upstream slope, it's gradient must be below 0.36~0.43.

  • PDF