• Title/Summary/Keyword: Velocity Particle

Search Result 1,620, Processing Time 0.028 seconds

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Suggestion of an experimental method for optimization of flange point of a bolt-clamped Langevin-type ultrasonic transducer (볼트 체결형 란주반 초음파 트랜스듀서의 프렌지 포인트 최적화를 위한 실험적 방법 제안)

  • Kim, Jungsoon;Kim, Haeun;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.270-277
    • /
    • 2021
  • In the power ultrasound fields, the flange position for fixing the transducer is an important factor influencing on electro-mechanical efficiency of the transducer. We suggested a practical method that can determine the installation position of the flange for different resonance modes of the bolt-clamped type Langevin ultrasonic transducer. A semicircular wedge-shaped jig was manufactured and moved along the lateral surface of the transducer. The vibration characteristics were examined after a constant pressure was applied to the semicircular wedge-shaped jig. By observing the change of the input admittance of the transducer depending on the position of the pressure application, the optimum position for the flange installation could be determined. The resonant modes of the transducer were calculated by a Mason's equivalent circuit, and the particle velocity distribution for each resonance mode was calculated by a transmission line model. Since the optimum positions determined from an experimental result show a good correspondence with the node positions of the vibration modes calculated by the transmission line model, the validity of the suggested method was verified.

Effect of Height on CNT Aggregates Size and Shape in Freeboard Region of a Fluidized Bed (유동층 반응기 프리보드 내 높이에 따른 CNT 응집체 형상 변화)

  • Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.105-110
    • /
    • 2019
  • Effect of height on the size and shape of carbon nanotube (CNT) aggregates in the freeboard region of a bubbling fluidized bed ($0.15m\;i.d.{\times}2.6m\;high$) has been determined. Feret diameter and Heywood diameter of the CNT aggregates in the freeboard region of fluidized bed increased with increasing gas velocity. The average aggregate diameters and CNT particle number in the aggregates decreased with increasing of height in the freeboard. Aspect ratio increased as the location was closer to the surface of the dense phase, but decreased at the highest location. Solidity did not show any significant changes with height. The results showed the aggregates formation process is affected by the height in the freeboard. A correlation was proposed to predict the Heywood diameter of the CNT aggregates.

Estimation of Vertical Load Capacity of PCFT Hybrid Composite Piles Using Dynamic Load Tests (동재하시험을 통한 긴장력이 도입된 콘크리트 충전 강관말뚝을 사용한 복합말뚝의 연직지지력 평가)

  • Park, Nowon;Paik, Kyuho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.3
    • /
    • pp.31-38
    • /
    • 2019
  • To determine the optimum dynamic load test analysis for PCFT (Prestressed Concrete Filled steel Tube) hybrid composite piles that PCFT piles are connected to the top of PHC piles, the dynamic load tests and CAPWAP analyses were performed on two hybrid composite piles with steel pipe and PCFT piles as upper piles. The results of the dynamic load tests and CAPWAP analyses showed that the particle velocity measured in PCFT hybrid composite piles was equal to the wave speed of PHC piles when the strain gauges and accelerometers are attached to the surface of inner composite PHC pile after removing the steel pipe in the upper PCFT pile. In addition, when assuming that the material of that upper PCFT pile was the same as that of the lower PHC pile and the cross-sectional area of the steel pipe in upper PCFT pile was converted to that for concrete through the pile model (PM) in CAPWAP analysis, the accuracy of the CAPWAP analysis result for PCFT hybrid composite piles was very high.

On vertical profiles of cohesive sediment: concentration, velocity gradient, and Stokes number (가는 유사 부유의 연직구조 특성 : 농도, 속도경사, 스토크스 수)

  • Son, Minwoo;Byun, Jisun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.391-391
    • /
    • 2016
  • 유수동역학적인 요소와 유사의 부유는 서로 상호작용을 주고받으며 다양한 현상을 만들어낸다. 많은 선행연구를 통해 유사 농도 등의 특성이 난류 구조 등의 변화를 야기하며, 변화한 난류 구조 역시 유사의 부유 등에 2차적인 영향을 준다는 점이 확인되었다. 본 연구에서는 가는 유사에 보다 집중하여 유사 부유와 이에 따른 연직구조 특성의 변화를 살펴본다. 본 연구에서는 1차원 연직 모형을 이용하여 수치실험을 수행한다. 본 연구에 이용된 모형은 가는 유사의 특성인 빠른 입자 반응 시간(Particle Response Time)이 가정되는 모형으로 선행연구를 통해 적용성이 검증된 것으로 판단한다. 주요 분석대상은 유사의 농도와 속도경사 간의 관계 등이며, 분석하는 유사 농도 종류는 일반적인 비점착성 유사의 경우에 관심을 가지는 질량 농도에 집중하여 결정된다. 수치실험 수행을 위해서는 정류 흐름, 진동파 흐름 등이 적용되었고 다양한 경우의 가는 유사를 고려하기 위한 실험조건의 변경이 이루어졌다. 수치실험 결과 진동파의 다양한 위상에서 조금씩 달라지는 연직구조가 확인되었다. 이는 보정되는 Schmidt 수의 값과도 연관관계를 가지는 것으로 나타났다. 특히 가는 유사의 경우에도 입자의 크기에 따라 다른 연직구조의 특성이 모의되었으며 이를 통해 수치실험의 경우에도 입자 크기의 고려 하에 매개변수의 보정이 이루어져야 한다는 점을 알 수 있다. 스토크스 수는 입자 반응 시간과 유체 난류 시간규모(Fluid Turbulence Ttime Scale)의 비율을 의미한다. 본 연구를 통해 스토크스 수가 유사의 확산강도 결정과 큰 상관 관계를 가지는 것을 알 수 있다. 이때 유사의 크기와 보정되는 Schmidt 수의 값은 고정되었다. 수치 계산시에 확산계수의 값이 부유 및 이에 따른 연직구조의 특성을 결정하는 중요한 변수라는 점을 고려할 때, 가는 유사의 부유를 모의할 때에는 세심한 주의가 요구된다는 점을 이해할 수 있다. 선행 연구사례를 통해 볼 때 부유하는 입자의 관성력이 Schmidt 수의 결정과 이에 따른 연직 구조의 계산에 큰 영향을 준다는 점을 알 수 있다. 본 연구에서는 스토크스 수를 관성력을 나타낼 수 있는 지표로서 계산하였지만 보다 정량적이고 효율적인 입자 관성력 지표가 제시될 때 효율적인 연구결과의 제시가 이루어질 수 있을 것으로 기대한다.

  • PDF

Performance Evaluation of Combined Sewer Overflow Treatment using Filtration Pilot Device (파일럿 여과장치를 이용한 합류식하수관 월류수 처리성능 평가)

  • Lee, Jun Ho;Shin, Young Gyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.409-417
    • /
    • 2019
  • In this study, a $480m^3/day$ pilot device was constructed through laboratory experiments based on the Ministry of Environment manual. The purpose of this study was to analyze the characteristics of CSO treatment and backwashing characteristics by applying the pilot device to the field. The purpose of this study was to acquire the basic data necessary for the design and operation management of the real scale filtration type non-point pollution control system. The filtration was conducted while maintaining the linear velocity of 20m/hour. The CSO treatment efficiencies of the pilot devices were 0.4-76.1%(mean 49.0 %), SS 51.4-91.6%(mean 77.8%), COD 22.2-59.4% (mean 38.3%) and TP 14.5-52.6%(mean 38.1%),respectively. The correlation coefficient between SS and the turbidity of influent water was 0.90, higher than that of CSO. To operate the treatment system effectively, the turbidity can be easily measured in real time as the monitoring item is the most appropriate because SS is the main target substance of the non-point source. As a result of analyzing the adsorbent treatment characteristics of PP filter material applied to this pilot device, the average particle diameter range of influent was $4.6-40.1{\mu}m$(mean $21.2{\mu}m$) and the treated water was $0.9-24.5{\mu}m$(mean $6.4{\mu}m$), respectively. Particles of approximately 10m or less are leached out, and so it is necessary to compensate for the raw water containing micro particulate matter.

Three-dimensional Numerical Simulation of Driftwood Accumulation and Behavior Around Bridge Piers (교각 주변 유목 집적 및 거동 특성 3차원 수치모의)

  • Park, Moonhyeong;Kim, Hyung Suk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.336-344
    • /
    • 2020
  • The prediction and evaluation of driftwood accumulation around river-crossing structures are essential because driftwood accumulation increases during flood disasters. In this study, the driftwood accumulation and behavior around bridge piers were evaluated via a numerical model that could be employed to analyze three-dimensional turbulent flow and driftwood motion. The moving particle semi-implicit-based model for driftwood motion was sensitive to the number of spheres. The numerical results showed that the approach velocity and the ratio of driftwood length to pier width were the key factors influencing driftwood accumulation, whereas the driftwood density had only a minor influence. Overall, it is expected that this study will contribute to the development of improved risk evaluation indexes for assessing driftwood accumulation around river-crossing structures.

Hydrogen Production by Methanol Steam Reforming over Micro-channel Reactor (마이크로 채널 반응기에서 메탄올의 수증기 개질반응을 통한 수소 제조)

  • Lee, Jin-Woo;Jeon, Hye-Jeong;Hong, Sung-Chang
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2009
  • Commercial catalyst (Cu-Zn/$Al_2O_3$, Johnson Matthey Co., 83-3 Catalyst) was applied to the hydrogen production by steam reforming of methanol in the micro-channel reactor (MCR). The steam reforming of methanol was tested over Cu-Zn catalyst at temperatures in the range of 200 and 300$^{\circ}C$, the catalyst size of 0.05${\sim}$2.2 mm, the space velocity of 3,000${\sim}$10,000 $hr^{-1}$ in a fixed bed continuous flow reactor. The conversion of methanol and the yield $H_2$ preferred high temperatures and low space velocities, and had optimal results with the particle size of 0.35 mm. Based on the results from experiments with fixed bed reactor, two types of MCR, boat bed and stacked bed MCRs, were studied. The stacked bed type MCR showed better methanol conversion compared with the boat type one.

A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods (시험 방법에 따른 동결토의 인장강도)

  • Seo, Young-Kyo;Kang, Hyo-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.57-66
    • /
    • 2008
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel and the stability were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Effect of pH Level on the Characteristics of a Landfill Clay Liner Material (pH에 따른 점토차수재의 특성)

  • Jung, Soo-Jung;Lee, Yong-Su;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.97-106
    • /
    • 2007
  • In this study, experiments are conducted to find out the effect of waste leachate on landfill clay liner system. Tensile test, hydrometer analysis and crack pattern test were conducted on sand-bentonite mixtures with different pH values of water. The tensile strength of specimen compacted with pH 9 of water is smaller than that of specimen compacted with for pH 3 and 6 of water. That is, the higher the pH value, the smaller the tensile strength, because a higher pH solution decreases flocculation phenomenon. The percent finer also increased with high pH value in particle size distribution of fine grained soil (<0.075 mm), because the velocity of particles settling decreases. This trend becomes the clearer as the content of bentonite, becomes the larger, because the higher pH value decreases flocculation structure of fine soils. The results of the crack pattern tests also showed the effect of pH values of water.