• Title/Summary/Keyword: Velocity Bias

Search Result 105, Processing Time 0.029 seconds

Performance Analysis of the KOMPSAT-1 Orbit Determination Using GPS Navigation Solutions (GPS 항행해를 이용한 아리랑 1호의 궤도결정 성능분석 연구)

  • Kim, Hae-Dong;Choi, Hae-Jin;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper, the performance of the KOMPSAT-1 orbit determination (OD) accuracy at the ground station was analyzed by using the flight data. The Bayesian least squares estimation was used for the orbit determination and the assessment of the orbit accuracy was evaluated based on orbit overlap comparisons. We also compared the result from OD using GPS navigation solutions with NORAD TLE and the result from OD using range data. Furthermore, the effect of observation type and OBT drift on the accuracy was investigated. As a consequence, It is shown that the OD accuracy using only GPS position data is on the order of 5m RMS (Root Mean Square) with 4 hrs arc overlap for the 30hr arc and the GPS velocity data is not proper as a observation for the OD due to its inferior quality. The significant deterioration of the accuracy due to the critical clock bias was not founded by means of the comparison of OD result from other observations.

Accuracy analysis of SPOT Orbit Modeling Using Orbit-Attitude Models (궤도기반 센서모델을 이용한 SPOT 위성 궤도모델링 정확도 분석)

  • Kim, Hyun-Suk;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.27-36
    • /
    • 2006
  • Conventionally, in order to get accurate geolocation of satellite images we need a set of ground control points with respect to individual scenes. In this paper, we tested the possibilities of modeling satellite orbits from individual scenes by establishing a sensor model for one scene and by applying the model, which was derived from the same orbital segment, to other scenes that has been acquired from the same orbital segment. We investigated orbit-attitude models with several interpolation methods and with various parameter sets to be adjusted. We used 7 satellite images of SPOT-3 with a length of 420km and ground control points acquired from GPS surveying. Results of the conventional individual scene modeling hardly introduced differences among different interpolation methods and different adjustment parameter sets. As the results of orbit modeling, the best model was the one with Lagrange interpolation for position/velocity and linear interpolation for attitude and with position/angle bias as parameter sets. The best model showed that it is possible to model orbital segments of 420km with ground control points measured within one scene (60km).

  • PDF

Applicability of Optical Flow Information for UAV Navigation under GNSS-denied Environment (위성항법 불용 환경에서의 무인비행체 항법을 위한 광류 정보 활용)

  • Kim, Dongmin;Kim, Taegyun;Jeaong, Hoijo;Suk, Jinyoung;Kim, Seungkeun;Kim, Younsil;Han, Sanghyuck
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.16-27
    • /
    • 2020
  • This paper investigates the applicability of optical flow information for unmanned aerial vehicle (UAV) navigation under environments where global navigation satellite system (GNSS) is unavailable. Since the optical flow information is one of important measurements to estimate horizontal velocity and position, accuracy of the optical flow information must be guaranteed. So a navigation algorithm, which can estimate and cancel biases that the optical flow information may have, is suggested to improve the estimation performance. In order to apply and verify the proposed algorithm, an integrated simulation environment is built by designing a guidance, navigation, and control (GNC) system. Numerical simulations are implemented to analyze the navigation performance using this environment.

Assessment of Ocean Surface Current Forecasts from High Resolution Global Seasonal Forecast System version 5 (고해상도 기후예측시스템의 표층해류 예측성능 평가)

  • Lee, Hyomee;Chang, Pil-Hun;Kang, KiRyong;Kang, Hyun-Suk;Kim, Yoonjae
    • Ocean and Polar Research
    • /
    • v.40 no.3
    • /
    • pp.99-114
    • /
    • 2018
  • In the present study, we assess the GloSea5 (Global Seasonal Forecasting System version 5) near-surface ocean current forecasts using globally observed surface drifter dataset. Annual mean surface current fields at 0-day forecast lead time are quite consistent with drifter-derived velocity fields, and low values of root mean square (RMS) errors distributes in global oceans, except for regions of high variability, such as the Antarctic Circumpolar Current, Kuroshio, and Gulf Stream. Moreover a comparison with the global high-resolution forecasting system, HYCOM (Hybrid Coordinate Ocean Model), signifies that GloSea5 performs well in terms of short-range surface-current forecasts. Predictions from 0-day to 4-week lead time are also validated for the global ocean and regions covering the main ocean basins. In general, the Indian Ocean and tropical regions yield relatively high RMS errors against all forecast lead times, whilst the Pacific and Atlantic Oceans show low values. RMS errors against forecast lead time ranging from 0-day to 4-week reveal the largest increase rate between 0-day and 1-week lead time in all regions. Correlation against forecast lead time also reveals similar results. In addition, a strong westward bias of about $0.2m\;s^{-1}$ is found along the Equator in the western Pacific on the initial forecast day, and it extends toward the Equator of the eastern Pacific as the lead time increases.

The Comparison of Sphere Fitting Methods for Estimating the Center of Rotation on a Human Joint (인체관절의 회전중심 추정을 위한 구적합법의 비교)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.53-62
    • /
    • 2013
  • The methods of fitting a circle to measured data, geometric fit and algebraic fit, have been studied profoundly in various areas of science. However, they have not been applied exactly to a biomechanics discipline for locating the center of rotation of a human joint. The purpose of this study was to generalize the methods to fitting spheres to the points in 3-dimension, and to estimate the center of rotation of a hip joint by three of geometric fit methods(Levenberg-Marquardt, Landau, and Sp$\ddot{a}$th) and four of algebraic fit methods(Delogne-K${\aa}$sa, Pratt, Taubin, and Hyper). 1000 times of simulation experiments for flexion/extension and ad/abduction at an artificial hip joint with four levels of range of motion(10, 15, 30, and $60^{\circ}$) and three levels of angular velocity(30, 60, and $90^{\circ}$/s) were executed to analyze the responses of the estimated center of rotation. The results showed that the Sp$\ddot{a}$th estimate was very sensitive to the marker near the center of rotation. The bias of Delogne-K${\aa}$sa estimate existed in an even larger range of motion. The Levenberg-Marquardt algorithm of geometric fit and the Pratt of algebraic fit showed the best results. The combination of two methods, using the Pratt's estimate as initial values of the Levenberg-Marquardt algorithm, could be a candidate of more valid estimator.

The first UV fundamental plane and evidence of star formation in early-type galaxies

  • Jeong, Hyun-Jin;Yi, Suk-Young;Bureau, Martin;Davies, Roger L.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • We present GALEX (Galaxy Evolution Explorer) far (FUV) and near (NUV) ultraviolet imaging of 34 nearby early-type galaxies from the SAURON representative sample of 48 E/S0 galaxies, all of which have ground-based optical imaging from the MDM Observatory. The surface brightness profiles of nine galaxies (~26 per cent) show regions with blue UV-optical colours suggesting recent star formation. Five of these (~15 per cent) show blue integrated UV-optical colours that set them aside in the NUV integrated colour-magnitude relation. These are objects with either exceptionally intense and localised NUV fluxes or blue UV-optical colours throughout. They also have other properties confirming they have had recent star formation, in particular Hbeta absorption higher than expected for a quiescent population and a higher CO detection rate. This suggests that residual star formation is more common in early-type galaxies than we are used to believe. NUV-blue galaxies are generally drawn from the lower stellar velocity dispersion (sigma_e <200 km/s) and thus lower dynamical mass part of the sample. We have also constructed the first UV Fundamental Planes and show that NUV blue galaxies bias the slopes and increase the scatters. If they are eliminated the fits get closer to expectations from the virial theorem. Although our analysis is based on a limited sample, it seems that a dominant fraction of the tilt and scatter of the UV Fundamental Planes is due to the presence of young stars in preferentially low-mass early-type galaxies.

  • PDF

A Study on Spectrum Moment Estimation in an Acoustic Doppler Current Profiler (ADCP에서의 스펙트럼 모멘트 추정에 관한 연구)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1790-1795
    • /
    • 2013
  • The current velocity and turbulence information in each range cell can be obtained from the first and second Doppler spectrum moment estimates. However, the very widely used correlation method often called as the pulse-pair method has the inherent restrictions under the highly turbulent conditions since it does not satisfy the assumptions that the return Doppler spectrum should be symmetric and have a single peak value. Therefore, in this paper, the quality of pulse-pair estimates were compared with that of FFT estimates for problem analysis using various shapes of simulated Doppler spectra. It can be known that the pulse-pair method often yields meaningless results if the received signals are severely biased or multi-peak Doppler spectra in the Doppler frequency domain.

Guidance Filter Design Based on Strapdown Seeker and MEMS Sensors (스트랩다운 탐색기 및 MEMS 센서를 이용한 유도필터 설계)

  • Yun, Joong-Sup;Ryoo, Chang-Kyung;Song, Taek-Lyul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1002-1009
    • /
    • 2009
  • Precision guidance filter design for a tactical missile with a strapdown seeker aided by low-cost strapdown sensors has been addressed in this paper. The low-cost strapdown sensors consist of an IMU with 3-axis accelerometers and gyroscopes, 3-axis magnetometers, and a barometer. Missile's position, velocity, attitude, and bias error of the barometer are considered as state variables. Since the state and measurement equations are highly nonlinear, we adopt UKF(Unscented Kalman Filter). The proposed guidance filter has a function of a navigation filter if target position error is not considered. In the case that the target position error is introduced, the proposed filter can effectively estimate the relative states of the missile to the true target. For specific engagement scenarios, we can observe that observability problems occur.

A Precise Trajectory Prediction Method for Target Designation Based on Cueing Data in Lower Tier Missile Defense Systems (큐잉 데이터 기반 하층방어 요격체계의 초고속 표적 탐지 방향 지정을 위한 정밀 궤적예측 기법)

  • Lee, Dong-Gwan;Cho, Kil-Seok;Shin, Jin-Hwa;Kim, Ji-Eun;Kwon, Jae-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.523-536
    • /
    • 2013
  • A recent air defense missile system is required to have a capability to intercept short-range super-high speed targets such as tactical ballistic missile(TBMs) by performing engagement control efficiently. Since flight time and distance of TBM are very short, the missile defense system should be ready to engage a TBM as soon as it takes an indication of the TBM launch. As a result, it has to predict TBM trajectory accurately with cueing information received from an early warning system, and designate search direction and volume for own radar to detect/track TBM as fast as it can, and also generate necessary engagement information. In addition, it is needed to engage TBM accurately via transmitting tracked TBM position and velocity data to the corresponding intercept missiles. In this paper, we proposed a method to estimate TBM trajectory based on the Kepler's law for the missile system to detect and track TBM using the cueing information received before the TBM arrives the apogee of the ballistic trajectory, and analyzed the bias of prediction error in terms of the transmission period of cueing data between the missile system and the early warning system.

LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving (도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘)

  • Kim, Jongho;Lee, Hojoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.