• Title/Summary/Keyword: Velocimetry

Search Result 853, Processing Time 0.025 seconds

Observing Thermal Counterflow in He II by the Particle Image Velocimetry Technique

  • Van Sciver S. W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • The Particle Image Velocimetry (PIV) technique can be used to obtain a whole-field view of thermal counterflow velocity profile in He II. Using commercially available microspheres, we have been able to visualize the normal fluid velocity in He II thermal counterflow; however, the measured velocities are less than predicted from the two fluid model. None the less, the PIV is a useful tool for observing the counterflow field in He II flow, particularly where the flow is complex as occurs through channel constrictions or around bluff objects. The present paper shows recent results using PIV to observe He II counterflow. Two cases are discussed: 1D channel flow and turbulent flow around a circular cylinder.

Effect of Orifice Length on Particle Distribution in Particle-laden Jet (입자 부상 제트에서 오리피스 길이가 입자 분포에 미치는 영향에 대한 연구)

  • Yoon, Jungsoo;Paik, Kyong-Yup;Khil, Taeock;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.9-15
    • /
    • 2012
  • As a propellant of a high speed underwater vehicle, the hydro-reactive solid metal particles using seawater as a oxidizer maximizes its specific impulse when the solid metal particles and the seawater are uniformly mixed in the combustion chamber. The purpose of this study is to investigate the effects of injector geometry on the particle distribution of similarity point of view. For the purpose of this similarity of the mean velocity and particle number density along the radial direction was measured by Particle Image Velocimetry(PIV).

Towed underwater PIV measurement for free-surface effects on turbulent wake of a surface-piercing body

  • Seol, Dong Myung;Seo, Jeong Hwa;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.404-413
    • /
    • 2013
  • In the present study, a towed underwater particle image velocimetry (PIV) system was validated in uniform flow and used to investigate the free-surface effects on the turbulent wake of a simple surface-piercing body. The selected test model was a cylindrical geometry formed by extruding the Wigley hull's waterplane shape in the vertical direction. Due to the constraints of the two-dimensional (2D) PIV system used for the present study, the velocity field measurements were done separately for the vertical and horizontal planes. Using the measured data at several different locations, it was possible to identify the free-surface effects on the turbulent wake in terms of the mean velocity components and turbulence quantities. In order to provide an accuracy level of the data, uncertainty assessment was done following the International Towing Tank Conference standard procedure.

Three-Dimensional Flow in an Aortic Bifurcation Model: Comparison of In Vitro Experiments and Numerical Simulation (대동맥 분기관 모델 내 삼차원 유동: In vitro 실험과 수치해석의 비교)

  • Kim, Young-H.;Seo, Sang-H.;Ryu, Sang-S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.15-18
    • /
    • 1995
  • Three-dimensional steady and pulsatile flow experiments and numerical simulations have conducted to investigate the flow characteristics in the aortic bifurcation model. In vitro velocity measurements were made using both laser Doppler anemometry and pulsed Doppler ultrasound velocimetry. In this study, flow phenomena in the aortic bifurcation model are discussed extensively and the numerical results are compared with experimental results.

  • PDF

Velocity Measurement of PIV Using a General Light Source (일반 광원을 이용한 PIV의 속도 측정)

  • 이교태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.559-564
    • /
    • 1999
  • A particle image velocimetry is the representative technique for measuring flow velocities at whole field simultaneously. The present study adopted the PTV method for velocity acquisition in a square enclosure with initially isothermal fluid by using a general lamp-based sheet light source. The enclosure was composed of hot and cold vertical wall and was confined by two horizon-tal adiabatic walls. The drift velocities were measured and the drift was visualized by PTV for a rayleigh number of 5.28{\times}10^8.$ Obtained instant simulataneous velocity vectors show flow pattern and the result of horizontal velocity profile agree well with the numerical result.

  • PDF

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

Two-Side Holography System for the Measurements of Spray Characteristics (양 방향 홀로그래피를 이용한 분무 특성 해석 시스템)

  • Choo, Yeon-Jun;Kang, Bo-Seon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1755-1760
    • /
    • 2004
  • The holographic velocimetry system has a significant potential for the measurements of three dimensional velocities of particles. In this study, orthogonal two-side holography system was developed to obtain three dimensional velocities and sizes of spray droplets. To get high quality of reconstructed images, singe-exposure holography at two time moments and two orthogonal sides was adopted instead of multi-exposure, single-side holography. From three dimensional positions of droplets determined by reconstruction and image processing system, the three dimensional velocities and sizes of each droplet was extracted using the PTV algorithm. To determine the position of particles in the optical axis, a new focusing parameter was introduced based on the correlation between two droplet images at the same distance. The measured results by holography system were compared with those by the PDPA.

  • PDF

Flow Characteristics of Dual Impinging Jets using PIV (PIV를 이용한 이중 충돌제트의 유동 특성)

  • Kim, Dong-Keon;Kwon, Soon-Hong;Chung, Sung-Won;Park, Jong-Min;Choi, Won-Sik;Kim, Jong-Soon;Kwon, Soon-Goo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.102-108
    • /
    • 2011
  • The flow characteristics of unventilated dual impinging jets were experimentally investigated. Two nozzles with an aspect ratio of 20 were separated by 6 nozzle widths. The Reynolds number based on nozzle width and nozzle exit velocity was set to 5,000. A Particle Image Velocimetry (PIV) was used to measure turbulent velocity components. It was found that, when an impingement plate was installed in the converging region, there was a stagnation region in the inner area between nozzles. However, when it was installed in the combined region, both jets were merged and collided into the plate, showing single-jet characteristics. In addition, at a dual impinging jet, as the distance between a nozzle and an impingement plate decreased, the spanwise turbulent intensity at the plate increased.

In-Cylinder Compression Flow Characteristics of Helical Port Engines with Wide Valve Angle (나선형 포트를 적용한 광각엔진에서 실린더 내 압축 유동 특성)

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • This paper is the second of 2 companion papers which investigate in-cylinder swirl generation characteristics in helical port engine with wide valve angle. Two wide valve-angle engines, which are same ones and have slightly different rig swirl number, were used to compare the characteristics of cylinder-flow. One intake port is deactivated to induce swirl flow. A PIV (Particle Image Velocimetry) was applied to measure in-cylinder velocity field during intake stroke. The results show that the intake flow component passing through valve area near the cylinder wall is not negligible in helical port engine with wide valve angle contrary to conventional one. The effect of this velocity component on in-cylinder increases as the swirl ratio rises and compression process progresses. Consequently, this component destroys in-cylinder swirl flow completely during compression resulting in no actual swirl at the end stage of compression.

An Experimental Study on the Flow Characteristics in Highly Viscous Liquid by Multi-Nozzle Bubbling (고점성 액체 내부에서의 다중 노즐 버블링에 의한 유동특성에 대한 실험적 연구)

  • Kim, Hyun-Dong;Ryu, Seung-Gyu;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.195-201
    • /
    • 2007
  • A visualization study of flow characteristics in a mixer using multi-nozzle bubbling was performed. The mixer is filed with liquid glycerin (dynamic viscosity = $1000mPa{\cdot}s\;at\;25^{\circ}C$) and convective mixing is induced by air bubbles generated from 9 orifices installed on the bottom of the mixer. To visualize the flow field, PIV (Particle Image Velocimetry) system consisting of 532nm Nd:YAG laser, $2k{\times}2k$ CCD camera and synchronizer is adopted. The bubbles generated with uniform size and frequency form bubble stream and bubble streams rise vertically without interaction between bubble streams. Mixing efficiency is affected by the height of bubbler and the effective height of bubbler is 20nm from the bottom of the mixer.