• Title/Summary/Keyword: Vehicular communications

Search Result 147, Processing Time 0.019 seconds

Fast Mobility Management Using Multi-casting Tunneling in Vehicular Networks (차량 네트워크에서 멀티 캐스팅 터널링을 이용한 고속 이동성 관리 방법)

  • Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.877-884
    • /
    • 2010
  • This paper presents a fast IP mobility management scheme in vehicular networks where multiple wireless network interfaces are used to perform the fast handover without packet loss and handover latency. In order to do that, the IETF standard HMIPv6 has been extended, where multiple simultaneous tunnels between the HMIPv6 MAP and the mobile gateway are dynamically constructed. The architecture for supporting multiple tunnels has been designed and both mathematical analysis and simulation using NS-2 have been done for performance evaluation.

Improving the Performance of OFDM-Based Vehicular Systems through Diversity Coding

  • Arrobo, Gabriel E.;Gitlin, Richard D.
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.132-141
    • /
    • 2013
  • In this paper, we present diversity coded orthogonal frequency division multiplexing (DC-OFDM), an approach to maximize the probability of successful reception and increase the reliability of OFDM-based systems through diversity coding. We focus on the application of DC-OFDM to vehicular networks based on IEEE 802.11p technology and analyze the performance improvement using this new technology. It is shown that DC-OFDM significantly improves the performance of vehicular ad hoc networks in terms of throughput and the expected number of correctly received symbols.

Pilot Subcarrier Based Channel Estimation Scheme in IEEE 802.11p Systems (IEEE 802.11p에서 파일럿 부반송파를 이용한 채널추정 기법)

  • Ren, Yongzhe;Park, Dong Chan;Kim, Suk Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.791-798
    • /
    • 2015
  • It has been grown interests of the convergence technologies about communication systems and vehicular industry. Vehicular communications enable a number of infotainment applications to serve cars under high mobility environments. To achieve this goal, a robust and accurate channel estimation scheme is of great importance. This paper proposes an enhanced Decision-Directed channel estimation scheme called PTAU(Pilot Tone Aided Update) for IEEE 802.11p in vehicular communication environment. Existing approaches which use subsequent data symbols to estimate channel response in time domain will lead to the error propagation. In this paper, we use the pilot subcarriers to get initial channel response, then utilize the correlation characteristics to update channel response in frequency domain. Finally, Analysis and simulation results reveal that the proposed scheme outperforms in bit error rate(BER), significantly improve the performance of the estimation.

A New Congestion Control Algorithm for Vehicle to Vehicle Safety Communications (차량 안전 통신을 위한 새로운 혼잡 제어 알고리즘 제안)

  • Yi, Wonjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.125-132
    • /
    • 2017
  • Vehicular safety service reduces traffic accidents and traffic congestion by informing drivers in advance of threats that may occur while driving using vehicle-to-vehicle (V2V) communications in a wireless environment. For vehicle safety services, every vehicle must broadcasts a Basic Safety Message(BSM) periodically. In congested traffic areas, however, network congestion can easily happen, reduce the message delivery ratio, increase end-to-end delay and destabilize vehicular safety service system. In this paper, to solve the network congestion problem in vehicle safety communications, we approximate the relationship between channel busy ratio and the number of vehicles and use it to estimate the total network congestion. We propose a new context-aware transmit power control algorithm which controls the transmission power based on total network congestion. The performance of the proposed algorithm is evaluated using Qualnet, a network simulator. As a result, the estimation of total network congestion is accurately approximated except in specific scenarios, and the packet error rate in vehicle safety communication is reduced through transmit power control.

Flicker-Free Spatial-PSK Modulation for Vehicular Image-Sensor Systems Based on Neural Networks (신경망 기반 차량 이미지센서 시스템을 위한 플리커 프리 공간-PSK 변조 기법)

  • Nguyen, Trang;Hong, Chang Hyun;Islam, Amirul;Le, Nam Tuan;Jang, Yeong Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.843-850
    • /
    • 2016
  • This paper introduces a novel modulation scheme for vehicular communication in taking advantage of existing LED lights available on a car. Our proposed 2-Phase Shift Keying (2-PSK) is a spatial modulation approach in which a pair of LED light sources in a car (either rear LEDs or front LEDs) is used as a transmitter. A typical camera (i.e. low frame rate at no greater than 30fps) that either a global shutter camera or a rolling shutter camera can be used as a receiver. The modulation scheme is a part of our Image Sensor Communication proposal submitted to IEEE 802.15.7r1 (TG7r1) recently. Also, a neural network approach is applied to improve the performance of LEDs detection and decoding under the noisy situation. Later, some analysis and experiment results are presented to indicate the performance of our system

An Efficient Directional MAC Protocol for Vehicular Ad-hoc Networks (차량 Ad-hoc에서 효율적인 메시지 전달을 위한 지향성 MAC 프로토콜)

  • Ji, Soonbae;Kim, Junghyun;You, Cheolwoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.9-16
    • /
    • 2015
  • Quick and safe message transmission is an important research topic of vehicular ad hoc networks (VANET). Most studies assume that the periodic broadcast of beacon-frames between vehicles increases the safety of the driver. In this paper, we propose a medium access control (MAC) protocol and location-based clustering for the VANET to support reliable data transfer. In our proposal, the cluster heade (CH) manage the access and allocate the resources of the node. Our proposal uses simulation to confirm the reduction of the transmission delay and the collision rate of the signal.

Scenario and Network Performance Evaluation for A Do Not Pass Warning Service Based on Vehicle-to-Vehicle Communications (차량 간 통신 기반 추월보조 서비스를 위한 시나리오 및 네트워크 성능 평가)

  • Seo, Hyun-Soo;Jung, Jin-Su;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.3
    • /
    • pp.227-232
    • /
    • 2013
  • Due to the development of ITS technology, various services related to transportation under vehicular environments have been provided. Especially, as wireless communication technology, WAVE has been established as a standard for vehicle-to-vehicle communications. WAVE has fast connection and excellent mobility characteristics. A VSC-A project is conducting by global automotive OEMs in USDOT. This project introduces the advanced safety services with vehicle-to-vehicle communications. In this paper, we presented the scenario of a do not pass warning service, which prevents an accident during overtaking activity by using vehicle-to-vehicle communications. In addition, we analyzed network performance under WAVE. In conclusion, we introduced the simulation results. Finally, we summarized the communication range and delay values for consideration factors for a overtaking model.

A RSU-Aided Resource Search and Cloud Construction Mechanism in VANETs (차량 네트워크에서 RSU를 이용한 리소스 검색 및 클라우드 구축 방안)

  • Lee, Yoonhyeong;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.3
    • /
    • pp.67-76
    • /
    • 2020
  • With the fast development in wireless communications and vehicular technologies, vehicular ad hoc networks (VANETs) have enabled to deliver data between vehicles. Recently, VANETs introduce a Vehicular Cloud (VC) model for collaborating to share and use resources of vehicles to create value-added services. To construct a VC, a vehicle should search vehicles that intend to provide their own resource. The single-hop search cannot search enough provider vehicles due to a small coverage and non-line-of-sights of communications. On the other hand, the multi-hop search causes very high traffics for large coverage searching and frequent connection breakages. Recently, many Roadside Units (RSUs) have been deployed on roads to collect the information of vehicles in their own coverages and to connect them to Internet. Thus, we propose a RSU-aided vehicular resource search and cloud construction mechanism in VANETS. In the proposed mechanism, a RSU collects the information of location and mobility of vehicles and selects provider vehicles enabled to provide resources needed for constructing a VC of a requester vehicle based on the collected information. In the proposed mechanism, the criteria for determining provider vehicles to provide resources are the connection duration between each candidate vehicle and the requester vehicle, the resource size of each candidate vehicle, and its connection starting time to the requester vehicle. Simulation results verify that the proposed mechanism achieves better performance than the existing mechanism.

A Zone based Routing algorithm for VANET (VANET 환경에서 구역 기반의 라우팅 알고리즘)

  • Lee, Seung-Hwan;Seok, Seung-Joon
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.325-332
    • /
    • 2012
  • VANET(Vehicular Ad-hoc Network), which is a technology to create a network among vehicles, decides the route to the destination using information of neighbors within the transmission range as transmission nodes. The existing routing protocol which uses geographical information can cause delay and disconnection of the network when the density of nodes is not high enough to communicate because it only considers the distance of the relay nodes or destination nodes from the source nodes. To solve the problem, this dissertation suggests a routing algorithm based on zones for stable communications among vehicles in the environment of VANET. I minimize the packet loss rate by dividing the city environment into zones and taking into account not only the distance of the destination but also the density of vehicles to choose the best communications environment. This results in a better performance than the established research when the performance evaluation is implemented.