• Title/Summary/Keyword: Vehicular Tunnel

Search Result 12, Processing Time 0.023 seconds

Case Study of Carbonation on Lining Concrete in Vehicular Tunnel as Ventilation System (도로터널의 환기방식에 따른 라이닝 콘크리트의 중성화 사례 연구)

  • Choo, Jin-Ho;Maeng, Doo-Young;Hwang, In-Baek;Noh, Eun-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.417-422
    • /
    • 2005
  • The appropriate ventilation system in vehicular tunnel should be the most economical solution with regard to both construction and maintenance. The damages on tunnel lining was affected by formula of ventilation system in long vehicular tunnel. In this study, carbonation, one of main experimental items in precision safety diagnosis, was analyzed by contouring damage area with ventilation system. Considerations of carbonation were also given to the design and maintenance which manage the long-term safety in tunnel.

  • PDF

A Study on ventilation characteristics in bidirectional traffic tunnels - focused on the effects of unequal vehicular speed (대면통행 터널의 환기특성 연구 - 양방향 차등차속의 영향분석을 중심으로)

  • Kim, Hyo-Gyu;Song, Seok-Hun;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2005
  • In general, tunnel ventilation is analyzed with the assumption of equal vehicular speed for both directions in bidirectional traffic tunnels. This practice is likely to result in minimizing the piston effects and cannot take into consideration the effects of real situations, since in most cases, speeds of vehicles moving in opposite directions are not equal. Therefore, The ultimate goal of this study is to review the effects of unequal vehicular speeds on the planning of local bidirectional tunnel ventilation. To apply unequal vehicular speed for the bidirectional tunnel ventilation plan, the following requirements are necessary; (1) Adoption of strict smoke concentration standards for 'free-flow & congested' traffic conditions, (2) Selection of an appropriate ratio of heavy directional traffic volume, and (3) Selection of reasonable stepwised magnitude of speed difference. Based on the importance of research topic, this study aims at comparing the differences of the capacity of ventilation equipment for the cases with equal and unequal vehicular speeds in local bidirectional tunnels.

  • PDF

Relationship between Adaptation Luminance and Threshold Zone Luminance for Vehicular Traffic Tunnels (터널 순응휘도와 경계부 휘도의 관계 연구)

  • Cho, Won Bum;Jeong, Jun Hwa
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.85-99
    • /
    • 2014
  • PURPOSES : This study has been performed with the objective to determine threshold zone luminance of adaptation luminance by target safety level in a vehicular traffic tunnel with design speed set at 100km/h. METHODS : The study made a miniature capable of portraying changes in luminance distribution within $2{\times}10^{\circ}$ conical field of view of the driver approaching to the tunnel for the test. Test conditions were set based on justifications for CIE 88-1990's threshold zone luminance used as a reference by domestic tunnel light standards (KS C 3703 : 2010). Luminance contrast of object background and object is 23%, object presentation duration is 0.5 seconds, and size of the object background is $7.3{\times}11.5m^2$ RESULTS : Threshold zone luminance was set within adaptation luminance of $100{\sim}3,000cd/m^2$. Adaptation luminance and threshold zone luminance based on 50%, 75% and 90% target safety level all showed a relatively high linear relationship. According to findings in the study, it is not appropriate to specify the relationship between adaptation luminance and threshold zone luminance as luminance ratio. Rather, direct utilization of the linear relationship gained from the study findings appears to be the better solution. CONCLUSIONS : Findings of this study may be used to determine operation of threshold zone luminance based on target safety level. However, a proper verification and validity of test results are required. Furthermore, a study to determine proper threshold zone luminance level considering target safety level reviewed in this study and various decision-making factors such as economic conditions in Korea and energy-related policies should be carried out in addition. Additional tests on adaptation luminance greater than $3,000cd/m^2$ will be performed, through which application scope of the test findings will be broadened.

Comparison of Safety Level between Driver's Ages by Threshold Zone Luminance Level of Vehicular Traffic Tunnel (터널 경계부 휘도수준에 따른 운전자 연령대별 안전수준 비교)

  • Cho, Won Bum;Jeong, Jun Hwa;Kim, Do Gyeong;Park, Won Il
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.129-142
    • /
    • 2015
  • PURPOSES : The purpose of this study is to suggest a basis for setting appropriate safety goals specifically related to the threshold zone luminance in a vehicular traffic tunnel. METHODS : In the test, drivers were divided into two groups. One group consisted of all drivers (average drivers) group with an age ratio of drivers holding domestic driver's license and driver group by age to produce threshold zone luminance in the tunnel. The threshold zone luminance produced as a result was used to analyze how it affects the safety level of each driver group and provide a basis for setting an appropriate safety criterion that can be used to determine threshold zone luminance. We used test equipment, test conditions, and ananalysis of threshold zone luminance identical to that reported by ChoandJung(2014) but the values of adaptation luminance in our analys is were expanded to range from100 to $10,000cd/m^2$. RESULTS : Adaptation luminance and threshold zone luminance are found to be related by a quadratic function. The threshold zone luminance needed by older drivers to ensure a certain safety level is significantly higher than that for drivers of other age brackets when adaptation luminance increases. 56% of older drivers are at an increased risk of an accident at the same luminance for which the safety level of average drivers is 75%. The safety level that can be achieved for older drivers increases to above 60% when threshold zone luminance level is set with the goal of attaining a safety level of more than 85% for average drivers. The safety level that can be attained for average drivers is above 90% when the threshold zone luminance is high enough to ensure over 75% in the safety level of older drivers. Results of this study are applicable to highways and others whose designed speed is 100 km/h. CONCLUSIONS : Threshold zone luminance determined on the basis of drivers having average visual ability is of limited value as a performance standard for ensuring the safety of older drivers. Hence, safety level for older drivers should be considered separately from safety levels for drivers with an average ability to avoid risk. Upward adjustment of older drivers' safety level in the process of determining appropriate threshold zone luminance in a vehicular traffic tunnel may bring both tangible and intangible benefit as a result of reducing accidents. However, there is an associated dollar cost arising from installing and operating lights. As a result, the economic impact of these trade-offs should also be considered.

An experimental study on the reduction method of earth pressure acting on the cut-and-cover tunnel lining (개착식 터널의 라이닝에 작용하는 토압경감대책에 관한 실험적 연구)

  • Kim, Sang-Yoon;Im, Jong-Chul;Park, Lee-Keun;Bautista, Ferdinand E.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.952-957
    • /
    • 2004
  • Cut and Cover Method is generally used in shallow tunnels and tunnel entrances with thin soil cover. In this type of cons0truction, backfilling is considered to be the most important process. In this process even though the backfill material is thoroughly compacted, compaction and self-weight due to vehicular vibration and pressure exerted by the soil cause the backfill material to undergo self-compression which leads to settlement. The settlement of the backfill material subjects the tunnel lining under excessive earth pressure which cause cracking and deformation. In the model test performed installation of geotextile on the sides and top of the tunnel was able to reduce the earth pressure acting on the tunnel lining.

  • PDF

The Composition of Non-methane Hydrocarbons Determined from a Tunnel of Seoul During Winter 2000

  • Kwangsam Na;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.69-77
    • /
    • 2000
  • Measurements of non-methane hydrocarbons (NMHC) were carried out in the Sangdo tunnel and on a nearby roadway in Seoul during the during the periods of heavy(low speed with ∼20km h(sup)-1) and light(high speed with ∼60kmh(sup)-1) traffic in February 2000. In the tunnel, the total NMHC levels during the heavy traffic period were higher than those during the light traffic period by a factor of 2. This was due to the increase of emissions at the low vehicle speed period and the higher dilution effect derived from faster flow of tunnel air at the high vehicle speed period. The average total NMHC concentration in the tunnel was 1.7 times as high as that on the roadway. The species with the highest concentration in the tunnel was ethylene(50.1 ppb), followed by n-butane(34.1 ppb) and propane (21.9 ppb). The concentration ranking in the tunnel was generally in good agreement with that on the roadway, suggesting that the NMHC compositions in the tunnel and on the nearby roadway were primarily determined by vehicle exhausts. However, the NMHC compositions in the Sangdo tunnel do not agree well with other foreign study results, reflecting that the characteristics of vehicle exhausts of Seoul is different from those of other cities. The most prominent difference between this study and other studies is the high mass fractions of butanes and propane. It was be attributed to the wide use of butane-fueled vehicles.

  • PDF

Verification of the Appropriateness of the Standard for Tunnel Luminance in the Threshold Zone Through a Full-scale Tunnel Driving Test (실 규모 터널 주행실험을 통한 터널 경계부 휘도 기준의 적정성 검증)

  • Park, Won Il;Cho, Won Bum;Jeong, Jun Hwa
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.105-115
    • /
    • 2015
  • PURPOSES : This study aimed to evaluate the appropriateness of safety with the standard for threshold zone luminance as specified in the Recommendation for Lighting of Traffic Tunnel, which has been widely adopted worldwide. METHODS : A driving test of the subject in a full-scale road tunnel was conducted. The adaptation luminance and threshold zone luminance, which should be known for the driver to perceive an object within stopping sight distance, were obtained. These values were compared with the adaptation luminance and threshold zone luminance obtained by the existing reduced model test and tunnel lighting standard that has served as a guideline for the current threshold zone luminance standard. RESULTS : According to this study, threshold zone luminance should be increased to at least 1.8 times the value proposed in the existing studies and to twice the domestic tunnel lighting standard (KS C 3703: 2014). CONCLUSIONS : The threshold zone luminance proposed in this study differs largely from that obtained from indoor tests and from the current tunnel lighting standard used worldwide; this difference may be attributed to the fact that the indoor tests did not incorporate driving workload, non-uniformity of luminance distribution in terms of sight, and factors that reduce the visibility of the driver, such as the light reflected into the driver's eyes. Hence, it is necessary to further review the factors that reduce the visibility of drivers approaching tunnels in order to determine the rational tunnel threshold zone luminance.

Stability of rectangular tunnel in improved soil surrounded by soft clay

  • Siddharth Pandey;Akanksha Tyagi
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.491-505
    • /
    • 2023
  • The practical usage of underground space and demand for vehicular tunnels necessitate the construction of non-circular wide rectangular tunnels. However, constructing large tunnels in soft clayey soil conditions with no ground improvement can lead to excessive ground deformations and collapse. In recent years, in situ ground improvement techniques such as jet grouting and deep cement mixing are often utilized to perform cement-stabilisation around the tunnel boundary to prevent large deformations and failure. This paper discusses the stability characteristics and failure behaviour of a wide rectangular tunnel in cement-treated soft clays. First, the plane strain finite element model is developed and validated with the results of centrifuge model tests available in the past literature. The critical tunnel support pressures computed from the numerical study are found to be in good agreement with those of centrifuge model tests. The influence of varying strength and thickness of improved soil surround, and cover depth are studied on the stability and failure modes of a rectangular tunnel. It is observed that the failure behaviour of the tunnel in improved soil surround depends on the ratio of the strength of improved soil surround to the strength of surrounding soil, i.e., qui/qus, rather than just qui. For low qui/qus ratios,the stability increases with the cover; however, for the high strength improved soil surrounds with qui >> qus, the stability decreases with the cover. The failure chart, modified stability equation, and stability chart are also proposed as preliminary design guidelines for constructing rectangular tunnels in the improved soil surrounded by soft clays.

Effect of windshields on the aerodynamic performance of a four-box bridge deck

  • Chen, Xi;Dragomirescu, Elena
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.31-41
    • /
    • 2020
  • A new type of bridge deck section consisting of four-box decks, two side decks for vehicular traffic lanes and two middle decks for railway traffic, has been experimentally investigated for determining its aerodynamic properties. The eight flutter derivatives were determined by the Iterative Least Squares (ILS) method for this new type of four-box deck model, with two windshields of 30 mm and 50 mm height respectively. Wind tunnel experiments were performed for angles of attack α = ±6°, ±4°, ±2° and 0° and Re numbers of 4.85×105 to 6.06×105 and it was found that the four-box deck with the 50 mm windshields had a better aerodynamic performance. Also, the results showed that the installation of the windshields reduced the values of the lift coefficient CL for the negative angles attack in the range of -6° to 0°, but the drag coefficient CD increased in the positive angle of attack range. However, galloping instability was not encountered for the tested reduced wind speeds, of up to 9.8. The aerodynamic force coefficients and the flutter derivatives for the four-box deck model were consistent with the results reported for the Messina triple-box bridge deck, but were different from those reported for the twin-box bridge decks.

A Study on Effectiveness for Car-Crash Fires Prevention through a Full-length Speed Enforcement System in Highway Tunnels (고속도로 터널내 차량추돌화재사고를 방지하기 위한 구간과속단속시스템 설치에 관한 통계적 연구)

  • Lee, Young-Jae;Kim, Gab-Cheol;Park, Hyung-Joo
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.119-127
    • /
    • 2011
  • Because of most notably the increase in vehicular traffic in Korea, as measured by highway transport usage, relief is being sought by expanding the construction of highways after 1970s'. These highways have opened up over 70 % of the mountainous areas in Korea's country side which includes the construction of tunnels. Currently there are 607 tunnels installed that are being maintained and by 2015, under the next medium-term plan, Korea will build an additional 440 tunnels. In addition, the use of 1,000m double-pole tunnels is expected to increase significantly in 256 locations. There is no doubt that these tunnels will relieve traffic congestion and aid improved communications, but halfclosed underground highway tunnels in particular are required to reduce tunnel fires caused by poor vehicle maintenance, and other factors such as speeding motorists that increase the number of vehicular accidents. Double-pole tunnels in 1,000m length over require vehicle drivers to be more cautious in terms of the continuous speed limit, judged by how devastating most of car-crash fires within these tunnels can be. In order to prevent these disasters, a full-length tunnel speed enforcement system should be considered mandatorily in legal clauses.