• 제목/요약/키워드: Vehicular Networks

검색결과 221건 처리시간 0.032초

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.419-421
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

Software-Defined Cloud-based Vehicular Networks with Task Computation Management

  • Nkenyereye, Lionel;Jang, Jong-Wook
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.238-240
    • /
    • 2018
  • Cloud vehicular networks are a promising paradigm to improve vehicular through distributing computation tasks between remote clouds and local vehicular terminals. Software-Defined Network(SDN) can bring advantages to Intelligent Transportation System(ITS) through its ability to provide flexibility and programmability through a logically centralized controlled cluster that has a full comprehension of view of the network. However, as the SDN paradigm is currently studied in vehicular ad hoc networks(VANETs), adapting it to work on cloud-based vehicular network requires some changes to address particular computation features such as task computation of applications of cloud-based vehicular networks. There has been initial work on briging SDN concepts to vehicular networks to reduce the latency by using the fog computing technology, but most of these studies do not directly tackle the issue of task computation. This paper proposes a Software-Defined Cloud-based vehicular Network called SDCVN framework. In this framework, we study the effectiveness of task computation of applications of cloud-based vehicular networks with vehicular cloud and roadside edge cloud. Considering the edge cloud service migration due to the vehicle mobility, we present an efficient roadside cloud based controller entity scheme where the tasks are adaptively computed through vehicular cloud mode or roadside computing predictive trajectory decision mode. Simulation results show that our proposal demonstrates a stable and low route setup time in case of installing the forwarding rules of the routing applications because the source node needs to contact the controller once to setup the route.

  • PDF

A Seamless Flow Mobility Management Architecture for Vehicular Communication Networks

  • Meneguette, Rodolfo Ipolito;Bittencourt, Luiz Fernando;Madeira, Edmundo Roberto Mauro
    • Journal of Communications and Networks
    • /
    • 제15권2호
    • /
    • pp.207-216
    • /
    • 2013
  • Vehicular ad-hoc networks (VANETs) are self-organizing, self-healing networks which provide wireless communication among vehicular and roadside devices. Applications in such networks can take advantage of the use of simultaneous connections, thereby maximizing the throughput and lowering latency. In order to take advantage of all radio interfaces of the vehicle and to provide good quality of service for vehicular applications, we developed a seamless flow mobility management architecture based on vehicular network application classes with network-based mobility management. Our goal is to minimize the time of flow connection exchange in order to comply with the minimum requirements of vehicular application classes, as well as to maximize their throughput. Network simulator (NS-3) simulations were performed to analyse the behaviour of our architecture by comparing it with other three scenarios. As a result of this work, we observed that the proposed architecture presented a low handover time, with lower packet loss and lower delay.

Vehicular Cyber-Physical Systems for Smart Road Networks

  • 정재훈;이은석
    • 정보와 통신
    • /
    • 제31권3호
    • /
    • pp.103-116
    • /
    • 2014
  • This paper proposes the design of Vehicular Cyber-Physical Systems (called VCPS) based on vehicular cloud for smart road networks. Our VCPS realizes mobile cloud computing services where vehicles themselves or mobile devices (e.g., smartphones and tablets of drivers or passengers in vehicles) play a role of both cloud server and cloud client in the vehicular cloud. First, this paper describes the architecture of vehicular networks for VCPS and the delay modeling for the event prediction and data delivery, such as a mobile node's travel delay along its navigation path and the packet delivery delay in vehicular networks. Second, the paper explains two VCPS applications as smart road services for the driving efficiency and safety through the vehicular cloud, such as interactive navigation and pedestrian protection. Last, the paper discusses further research issues for VCPS for smart road networks.

Uplinks Analysis and Optimization of Hybrid Vehicular Networks

  • Li, Shikuan;Li, Zipeng;Ge, Xiaohu;Li, Yonghui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.473-493
    • /
    • 2019
  • 5G vehicular communication is one of key enablers in next generation intelligent transportation system (ITS), that require ultra-reliable and low latency communication (URLLC). To meet this requirement, a new hybrid vehicular network structure which supports both centralized network structure and distributed structure is proposed in this paper. Based on the proposed network structure, a new vehicular network utility model considering the latency and reliability in vehicular networks is developed based on Euclidean norm theory. Building on the Pareto improvement theory in economics, a vehicular network uplink optimization algorithm is proposed to optimize the uplink utility of vehicles on the roads. Simulation results show that the proposed scheme can significantly improve the uplink vehicular network utility in vehicular networks to meet the URLLC requirements.

Wi-Fi 기반 차량 네트워크에서의 인터넷 처리율 분석 (Throughput Analysis in Vehicular Wi-Fi Networks)

  • 김원중;김영현;윤주상;백상헌
    • 정보처리학회논문지C
    • /
    • 제18C권1호
    • /
    • pp.45-50
    • /
    • 2011
  • 최근 무선 통신의 발달과 무선 접속 기기의 등장으로 인하여 언제, 어디서든 인터넷을 접속하여 다양한 응용 프로그램을 사용할 수 있게 되었다. 특히, 차량 네트워크의 발달로 이동 중인 차량에서도 인터넷 접속이 가능하게 되었다. 또한, 차량 네트워크와 관련된 다양한 연구들이 활발히 진행되고 있다. 본 논문에서는 실제로 쓰이는 다양한 차량 네트워크의 구조를 살펴보고, 각 구조에서 차량 내에서의 Wi-Fi와 외부의 네트워크를 종합적으로 고려하여 성능 측정을 하였다. 성능 측정 결과를 통해서 현재 사용되고 있는 차량 네트워크의 유용성을 판단하였다.

Secure Cluster Selection in Autonomous Vehicular Networks

  • Mohammed, Alkhathami
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.11-16
    • /
    • 2023
  • Vehicular networks are part of the next generation wireless and smart Intelligent Transportation Systems (ITS). In the future, autonomous vehicles will be an integral part of ITS and will provide safe and reliable traveling features to the users. The reliability and security of data transmission in vehicular networks has been a challenging task. To manage data transmission in vehicular networks, road networks are divided into clusters and a cluster head is selected to handle the data. The selection of cluster heads is a challenge as vehicles are mobile and their connectivity is dynamically changing. In this paper, a novel secure cluster head selection algorithm is proposed for secure and reliable data sharing. The idea is to use the secrecy rate of each vehicle in the cluster and adaptively select the most secure vehicle as the cluster head. Simulation results show that the proposed scheme improves the reliability and security of the transmission significantly.

A Secure and Efficient Message Authentication Scheme for Vehicular Networks based on LTE-V

  • Xu, Cheng;Huang, Xiaohong;Ma, Maode;Bao, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2841-2860
    • /
    • 2018
  • Vehicular networks play an important role in current intelligent transportation networks and have gained much attention from academia and industry. Vehicular networks can be enhanced by Long Term Evolution-Vehicle (LTE-V) technology, which has been defined in a series of standards by the 3rd Generation Partnership Project (3GPP). LTE-V technology is a systematic and integrated V2X solution. To guarantee secure LTE-V communication, security and privacy issues must be addressed before the network is deployed. The present study aims to improve the security functionality of vehicular LTE networks by proposing an efficient and secure ID-based message authentication scheme for vehicular networks, named the ESMAV. We demonstrate its ability to simultaneously support both mutual authentication and privacy protection. In addition, the ESMAV exhibit better performance in terms of overhead computation, communication cost, and security functions, which includes privacy preservation and non-frameability.

Modeling Geographical Anycasting Routing in Vehicular Networks

  • Amirshahi, Alireza;Romoozi, Morteza;Raayatpanah, Mohammad Ali;Asghari, Seyyed Amir
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권4호
    • /
    • pp.1624-1647
    • /
    • 2020
  • Vehicular network is one of the most important subjects for researchers in recent years. Anycast routing protocols have many applications in vehicular ad hoc networks. The aim of an anycast protocol is sending packets to at least one of the receivers among candidate receivers. Studies done on anycast protocols over vehicular networks, however, have capability of implementation on some applications; they are partial, and application specific. No need to say that the lack of a comprehensive study, having a strong analytical background, is felt. Mathematical modeling in vehicular networks is difficult because the topology of these networks is dynamic. In this paper, it has been demonstrated that vehicular networks can be modeled based on time-expanded networks. The focus of this article is on geographical anycast. Three different scenarios were proposed including sending geographic anycast packet to exactly-one-destination, to at-least-one-destination, and to K-anycast destination, which can cover important applications of geographical anycast routing protocols. As the proposed model is of MILP type, a decentralized heuristic algorithm was presented. The evaluation process of this study includes the production of numerical results by Branch and Bound algorithm in general algebraic modeling system (GAMS) software and simulation of the proposed protocol in OMNET++ simulator. The comprehension of the result of proposed protocol and model shows that the applicability of this proposed protocol and its reactive conformity with the presented models based on presented metrics.

차량 클라우드 환경에서 블룸 필터를 이용한 계층적 하이브리드 콘텐츠 전송 방법의 설계 및 평가 (Design and Evaluation of a Hierarchical Hybrid Content Delivery Scheme using Bloom Filter in Vehicular Cloud Environments)

  • 배인한
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1597-1608
    • /
    • 2016
  • Recently, a number of solutions were proposed to address the challenges and issues of vehicular networks. Vehicular Cloud Computing (VCC) is one of the solutions. The vehicular cloud computing is a new hybrid technology that has a remarkable impact on traffic management and road safety by instantly using vehicular resources. In this paper, we study an important vehicular cloud service, content-based delivery, that allows future vehicular cloud applications to store, share and search data totally within the cloud. We design a VCC-based system architecture for efficient sharing of vehicular contents, and propose a Hierarchical Hybrid Content Delivery scheme using Bloom Filter (H2CDBF) for efficient vehicular content delivery in Vehicular Ad-hoc Networks (VANETs). The performance of the proposed H2CDBF is evaluated through an analytical model, and is compared to the proactive content discovery scheme, Bloom-Filter Routing (BFR).