Given recent accidents involving autonomous vehicles, driver monitoring technology related to the transition of control in autonomous vehicles is gaining prominence. Driver status monitoring systems recognize the driver's level of alertness and identify possible impairments in the driving ability owing to conditions including drowsiness and distraction. In autonomous vehicles, predictive factors for the transition to manual driving should also be included. During traditional human driving, monitoring the driver's status is relatively straightforward owing to the consistency of crucial cues, such as the driver's location, head orientation, gaze direction, and hand placement. However, monitoring becomes more challenging during autonomous driving because of the absence of direct manual control and the driver's engagement in other activities, which may obscure the accurate assessment of the driver's readiness to intervene. Hence, safety-ensuring technology must be balanced with user experience in autonomous driving. We explore relevant global and domestic regulations, the new car assessment program, and related standards to extract requirements for driver status monitoring. This kind of monitoring can both enhance the autonomous driving performance and contribute to the overall safety of autonomous vehicles on the road.
Transportation in the logistics, many business organizations are engaged in monitoring and tracking the vehicles in order to improve logistics services, reduce expenses and secure security in cargo transportation. It is saving time and money by tracking and monitoring vehicles which transport cargo in supply chain of logistics. Therefore the main issue of delivery flow is to improve services, and ensure the safety in transportation system. This article suggests the tracking and monitoring model to keep safety transports on ICT network. It focuses on precise delivery control by monitoring and tracking vehicles to save time and costs. The status of product movement is analyzed for proper decision making. The vehicle embedded with RFID is automatically tracked in the movement process by tracking and monitoring model. The main role keeps safety tracking to reduce costs and to deliver products at proper time and location.
Drive-by monitoring (also known as indirect monitoring or mobile sensing) of bridges has obvious advantages when compared to other approaches of Structural Health Monitoring. The underlying concept involves leveraging the coupling between the vertical vibrations of the bridge and those generated in the passing vehicle. In this scenario, the vehicle serves as both the initiator and recipient of the vibrations, which can provide information on the structural condition of the bridge. In the literature, a wide range of methods has been proposed, primarily focused on highway bridges. However, limited research has been published to assess the suitability of indirect methods for monitoring railway bridges, bounded to numerical studies based on theoretical simulations and, rarely, on experimental investigations. The aim of this work is to contribute to filling this gap and explore the feasibility of implementing drive-by monitoring for railway bridges using in-service vehicles and discuss its potential applicability, from theoretical and practical point of view, with illustration through real case studies from the Moroccan railway network.
본 논문에서는 국내 겨울철 폭설과 같은 재난 발생시 각 지자체 별로 확보되어 있는 제설차량을 효과적으로 운영하고 제설현장 정보 및 차량의 이동성을 실시간으로 모니터링하여 폭설 재난현장에 대해 신속히 대처할 수 있는 실시간 모니터링 시스템을 제안하였다. 또한, 제안 시스템에서 중계단말의 효과적인 진단 및 각종 제어정보를 분석할 수 있는 중계단말 분석 도구를 설계하였다. 제안한 시스템은 폭설시 제설차량의 위치정보와 제설작업을 위한 차량제어정보 및 제설작업 상태정보를 실시간으로 모니터링 함으로써 짧은 시간에 효과적인 작업진행과 실시간 이동경로추적을 통하여 폭설 재난상황에 대한 효과적인 응급대처가 가능한 시스템이다.
Over the past few decades, the impact of natural, manmade and natech (natural hazard triggering technological disasters) disasters has been devastating, affecting over 4.4 billion people. In spite of recent technological advances, the increasing frequency and intensity of natural disasters and the escalation of manmade threats is presenting a number of challenges that warrant immediate attention. This paper explores the integration of drones or Unmanned Aerial Vehicles (UAV's) into infrastructure monitoring and post-disaster assessment. Through reviewing some of the recent disasters, effectiveness of utilizing UAV's in different stages of disaster life cycle is demonstrated and needed steps for successful integration of UAV's in infrastructure monitoring, hazard mitigation and post-incident assessment applications are discussed. In addition, some of the challenges associated with implementing UAV's in disaster monitoring, together with research needs to overcome associated knowledge gaps, is presented.
In this paper, we describe an intelligent monitoring and control system for pick-up/delivery service. This system applies geographical information system(GIS), global positioning system(GPS) and wireless communication technologies for managing pick-up/delivery operations more effectively. It consists of three subsystems, pick-up/delivery sequence planning system, pick-up/delivery monitoring system, and PDA execution system. Pick-up/delivery sequence planning system generates routes and schedules for pick-up/delivery using GIS and optimization techniques. Pick-up/delivery monitoring system monitors current positions of vehicles and actual pick-up/delivery results as compared with planned routes and visit times, while PDA execution system transmits information for vehicles positions and actual pick-up/delivery results using GPS and wireless communication technologies. The intelligent monitoring and control system is currently being used for the pick-up parcel service in a local post office of Korea Post.
In this paper, the simulator of an on-line monitoring system for the range extender electric vehicle has been developed. The messages from the four control modules, the air pressure and fuel level sensors data, and the on/off switching states of 31 indicator lamps can be received through the control area network (CAN), and displayed on the graphic panel. The simulator was designed using the four DSP boards, variable resistors, and toggle switches instead of the four control modules, sensors, and switching state of indicator lamps on an actual series hybrid electric vehicle (SHEV) bus, respectively. The performance of the monitoring technologies was verified with the simulator at the laboratory, and then it was tested on an actual SHEV bus. The simulator is very useful at the initial development of the monitoring system at the hybrid-type or electrical vehicles.
When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.
The age of autonomous vehicles has come according to development of high performance sensing and artificial intelligence technologies. And importance of the vehicle's surrounding environment sensing and observation is increasing accordingly because of its stability and control efficiency. In this paper we propose an integrated platform for efficient networking, analysis and monitoring of multiple sensing data on the vehicle that are equiped with various automotive sensors such as GPS, weather radar, automotive radar, temperature and humidity sensors. From simulation results, we could see that the proposed platform could perform realtime analysis and monitoring of various sensing data that were observed from the vehicle sensors. And we expect that our system can support drivers or autonomous vehicles to recognize optimally various sudden or danger driving environments on the road.
It is well known that overloaded vehicles may cause severe damages to bridges, and how to estimate and evaluate the status of the overloaded vehicles passing through bridges become a challenging problem. Therefore, based on the monitored strain data from a structural health monitoring system (SHM) installed on a bridge, a method is recommended to identify and analyze the probability of overloaded vehicles. Overloaded vehicle loads can cause abnormity in the monitored strains, though the abnormal strains may be small in a concrete continuous rigid frame bridge. Firstly, the abnormal strains are identified from the abundant strains in time sequence by taking the advantage of wavelet transform in abnormal signal identification; secondly, the abnormal strains induced by heavy vehicles are picked up by the comparison between the identified abnormal strains and the strain threshold gotten by finite element analysis of the normal heavy vehicle; finally, according to the determined abnormal strains induced by overloaded vehicles, the statistics of the overloaded vehicles passing through the bridge are summarized and the whole probability of the overloaded vehicles is analyzed. The research shows the feasibility of using the monitored strains from a long-term SHM to identify the information of overloaded vehicles passing through a bridge, which can help the traffic department to master the heavy truck information and do the damage analysis of bridges further.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.