• 제목/요약/키워드: Vehicle-to-grid

검색결과 246건 처리시간 0.023초

DC 배전의 전압 안정화를 위한 V2G 연계 기술 (Vehicle to Grid Technology for Voltage Stabilization in DC Power Distribution)

  • 김석웅;정재승;조진태;김주용;김태훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.449-450
    • /
    • 2016
  • DC 배전은 분산전원의 연계 효율이 높기 때문에 신재생 에너지의 발전과 함께 연구가 활발히 진행되고 있다. 특히 배터리를 포함하는 전기자동차는 계통으로 전력을 공급함에 따라 피크 부하 감쇄 및 전력 평준화를 이룰 수 있으며, 고가의 에너지 저장장치(ESS)를 대체할 수 있어 관심이 집중되고 있다. 본 논문에서는 바이폴 DC 배전에 적합한 V2G(Vehicle to Grid) 양방향 토폴로지를 제안하였고, V2G 를 활용하여 계통 전압을 개선할 수 있었다. 제안된 기술은 PSCAD/EMTDC 시뮬레이션을 통하여 효과를 검증하였다.

  • PDF

IT 융합보안에서의 위협요소 분석 (Analysis of Threats Factor in IT Convergence Security)

  • 이근호
    • 한국융합학회논문지
    • /
    • 제1권1호
    • /
    • pp.49-55
    • /
    • 2010
  • 정보통신기술 발전에 따라 많은 장치들간의 통신과 네트워킹의 수용이 이뤄지고 있다. 장치간의 통신을 위한 융합 사업이 빠르게 발전되어지고 있다. IT 융합 통신은 무선통신에서 차후 개척분야의 하나로 여겨지고 있다. 본 논문에서는 IT 융합 구조에서 M2M, 지능형 자동차, 스마트그리드, U-헬스케어에 대한 보안 위협요소를 분석하였다. 임베디드 시스템 보안, 포렌식 보안, 사용자 인증과 키관리 기법에 대한 IT 융합 보안의 방향을 제안하였다.

제주도에서 전기자동차 보급이 전력계통에 미치는 영향 (The Effects of Penetration of the Electric Vehicles on the Electric Power Grid in the Jeju Island)

  • 오성보;이개명;황충구
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.10-17
    • /
    • 2014
  • The Jeju Special Self-Government Provincial Government has made the plan penetrating gradually electric vehicles(EVs) in the Jeju Special Self-Government Province(Jejudo). However the effects of EVs penetration on the electrical grid of the Jejudo is not reported. In this paper the yearly electric energy consumed by the EVs was calculated and the effects of the EV penetration on the peak power of the grid were analyzed in the Jejudo for the future 10 years, and we hope that our study results will help the governors realize the EVs penetration plan in the Jejudo. The calculation results show that the rate of the electric energy used by the EVs will become to 2.9% at its maximum at the 2017 year when the penetration rate of EVs in passenger cars becomes 10%, and the rate of the electric energy consumed by the EVs will become to 9.4% at its maximum at the 2020 year when the penetration rate of EVs in passenger cars becomes 30%. The concepts of smart-charging capacity and 100%-valley-filling charging capacity of the grid were defined and calculated for the Jeju Grid, and the grid was analyzed to have the sufficient EV charging capacity until the 2022 year.

Obstacle Avoidance Method for UAVs using Polar Grid

  • Pant, Sudarshan;Lee, Sangdon
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.1088-1098
    • /
    • 2020
  • This paper proposes an obstacle avoidance method using a depth polar grid. Depth information is a crucial factor for determining the safe path for collision-free navigation of unmanned aerial vehicles (UAVs) as it can perceive the distance to the obstacles effectively. However, the existing depth-camera-based approaches for obstacle avoidance require computational y expensive path planning algorithms. We propose a simple navigation method using the polar-grid of the depth information obtained from the camera with narrow field-of-view(FOV). The effectiveness of the approach was validated by a series of experiments using software-in-the-loop simulation in a realistic outdoor environment. The experimental results show that the proposed approach successfully avoids obstacles using a single depth camera with limited FOV.

전기자동차용 통합충전기의 모델링 및 전류제어기 설계 (Modeling and Current Controller Design of Integrated Charger)

  • 허건;박용순
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 추계학술대회
    • /
    • pp.42-44
    • /
    • 2018
  • An integrated charger is used for bi-directional power conversion between an electric vehicle and a power grid. The proposed integrated charger works in a way that motor windings are utilized as filter inductances for charging/discharging of batteries in addition to the original purpose of motor drives. After a mathematical model of the integrated charger based on an dual winding induction machine (DWIM) is discussed, a current control method is designed for grid connection. The effectiveness of the proposed method is examined with simulation results.

  • PDF

A Novel Photovoltaic Power Harvesting System Using a Transformerless H6 Single-Phase Inverter with Improved Grid Current Quality

  • Radhika, A.;Shunmugalatha, A.
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.654-665
    • /
    • 2016
  • The pumping of electric power from photovoltaic (PV) farms is normally carried out using transformers, which require heavy mounting structures and are thus costly, less efficient, and bulky. Therefore, transformerless schemes are developed for the injection of power into the grid. Compared with the H4 inverter topology, the H6 topology is a better choice for pumping PV power into the grid because of the reduced common mode current. This paper presents how the perturb and observe (P&O) algorithm for maximum power point tracking (MPPT) can be implemented in the H6 inverter topology along with the improved sinusoidal current injected to the grid at unity power factor with the average current mode control technique. On the basis of the P&O MPPT algorithm, a power reference for the present insolation level is first calculated. Maintaining this power reference and referring to the AC sine wave of bus bars, a sinusoidal current at unity power factor is injected to the grid. The proportional integral (PI) controller and fuzzy logic controller (FLC) are designed and implemented. The FLC outperforms the PI controller in terms of conversion efficiency and injected power quality. A simulation in the MATLAB/SIMULINK environment is carried out. An experimental prototype is built to validate the proposed idea. The dynamic and steady-state performances of the FLC controller are found to be better than those of the PI controller. The results are presented in this paper.

사전 정보가 없는 배송지에서 장애물 탐지 및 배송 드론의 안전 착륙 지점 선정 기법 (Obstacle Detection and Safe Landing Site Selection for Delivery Drones at Delivery Destinations without Prior Information)

  • 서민철;한상익
    • 자동차안전학회지
    • /
    • 제16권2호
    • /
    • pp.20-26
    • /
    • 2024
  • The delivery using drones has been attracting attention because it can innovatively reduce the delivery time from the time of order to completion of delivery compared to the current delivery system, and there have been pilot projects conducted for safe drone delivery. However, the current drone delivery system has the disadvantage of limiting the operational efficiency offered by fully autonomous delivery drones in that drones mainly deliver goods to pre-set landing sites or delivery bases, and the final delivery is still made by humans. In this paper, to overcome these limitations, we propose obstacle detection and landing site selection algorithm based on a vision sensor that enables safe drone landing at the delivery location of the product orderer, and experimentally prove the possibility of station-to-door delivery. The proposed algorithm forms a 3D map of point cloud based on simultaneous localization and mapping (SLAM) technology and presents a grid segmentation technique, allowing drones to stably find a landing site even in places without prior information. We aims to verify the performance of the proposed algorithm through streaming data received from the drone.

도로운송부문용 에너지 공급 시스템 설계 및 경제성평가 (Scenario-based Design and Life Cycle Cost Analysis of Energy Supply System for Transportation Sector)

  • 한슬기;김지용
    • Korean Chemical Engineering Research
    • /
    • 제53권2호
    • /
    • pp.164-173
    • /
    • 2015
  • 본 연구에서는 다양한 도로운송부문용 에너지 공급 시스템을 구축하고 각 시나리오의 최적 비용을 비교분석하였다. 에너지 공급 시스템의 구성요소로써 기존의 정유공정, 부생수소 시스템, 신재생 에너지 자원 기반의 전력 생산공정, 전력운송을 위한 전력망을 설정하였으며, 내연기관자동차, 전기자동차, 연료전지자동차 등 세 가지의 도로운송부문용 자동차를 포함하였다. 이러한 구성요소를 포함한 다양한 에너지 공급 시스템 시나리오를 기반으로 최적 생애주기비용을 규명할 수 있는 에너지 시스템 평가모델을 개발하였다. 본 연구에서 개발한 최적화 모델을 제주도 지역에 적용함으로써 모델의 성능을 검증하였고 또한 제주도 지역의 에너지 시스템 구축에 관한 다양한 시나리오의 경제성을 분석하였다. 제주도 도로운송부문용 에너지 공급 시스템의 생애주기비용 분석 결과, 전력망을 이용하여 전기를 공급하는 전기자동차 시나리오가 상대적으로 가장 높은 경제성을 보였으며, 신재생 에너지 자원을 이용하여 수소를 공급하는 연료전지자동차 시나리오가 가장 낮은 경제성을 보였다. 또한 연료비용, 차량비용, 인프라비용, 유지비용 등 주요 비용 관련 변수들에 관한 민감도분석을 수행함으로써 생애주기비용의 변화에 주요한 구성요소들을 규명하였다.

Simultaneous Control of Frequency Fluctuation and Battery SOC in a Smart Grid using LFC and EV Controllers based on Optimal MIMO-MPC

  • Pahasa, Jonglak;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.601-611
    • /
    • 2017
  • This paper proposes a simultaneous control of frequency deviation and electric vehicles (EVs) battery state of charge (SOC) using load frequency control (LFC) and EV controllers. In order to provide both frequency stabilization and SOC schedule near optimal performance within the whole operating regions, a multiple-input multiple-output model predictive control (MIMO-MPC) is employed for the coordination of LFC and EV controllers. The MIMO-MPC is an effective model-based prediction which calculates future control signals by an optimization of quadratic programming based on the plant model, past manipulate, measured disturbance, and control signals. By optimizing the input and output weights of the MIMO-MPC using particle swarm optimization (PSO), the optimal MIMO-MPC for simultaneous control of the LFC and EVs, is able to stabilize the frequency fluctuation and maintain the desired battery SOC at the certain time, effectively. Simulation study in a two-area interconnected power system with wind farms shows the effectiveness of the proposed MIMO-MPC over the proportional integral (PI) controller and the decentralized vehicle to grid control (DVC) controller.

재사용 ESS를 위한 리튬 배터리 덴드라이트 보호 알고리즘 제안 (Proposal Protection Algorithm of Dendritic Lithium for Battery Second Use ESS)

  • 송정용;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.422-426
    • /
    • 2018
  • The lithium-ion battery pack of an electric vehicle (EV) deserves to be considered for an alternative use within smart-grid infrastructure. Despite the long automotive service life, EV batteries retain over 70~80% of their initial capacity. These battery packs must be managed for their reliability and safety. Therefore, a battery management system (BMS) should use specific algorithms to measure and estimate the status of the battery. Most importantly, the BMS of a grid-connected energy storage system (ESS) must ensure that the lithium-ion battery does not catch fire or explode due to an internal short from uncontrolled dendrite growth. In other words, the BMS of a lithium-ion battery pack should be capable of detecting the battery's status based on the electrochemical reaction continuously until the end of the battery's lifespan. In this paper, we propose a new protection algorithm for a dendritic lithium battery. The proposed algorithm has applied a parameter from battery pack aging results and has control power managing.