• 제목/요약/키워드: Vehicle-induced vibration

검색결과 89건 처리시간 0.028초

상용차량의 브레이크 시스템과 차량 시스템 주파수 분석을 통한 브레이크 저더의 실험적 고찰 (An Experimental Study on Brake Judder via the Frequency Analysis of the Brake System and Vehicle System of a Commercial Vehicle)

  • 문일동;김종대;오재윤
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1131-1138
    • /
    • 2007
  • This paper studies experimentally on the building-up process for the amplitude of a commercial truck vibration induced by brake judder. A front axle drum equipped with a drum brake system is utilized for this experiment. A brake dynamo test, a real vehicle ride test and a real vehicle braking test are performed for the analysis of brake judder. The brake dynamo test measures judder by applying brake chamber pressures of 1, 2 and 3 bar at initial brake pad temperatures of $100^{\circ}C$ and $150^{\circ}C$. In order to assess the vertical acceleration at the front axle, the real vehicle ride test on a straight test road with velocities of 20, 40, 60 and 80 km/h is performed. The real vehicle braking test is carried out at the deceleration rate of 0.2g from a velocity of 90km/h for evaluating the vertical, lateral and longitudinal accelerations both at the front axle and at the cab floor under the driver's seat. The magnitudes and frequencies of the measured peak accelerations from the brake dynamo test, the real vehicle ride test and the real vehicle braking test are comparatively analyzed. This paper shows that the vibration produced by brake judder is built up due to the brake system's peak acceleration frequency being close to the vehicle ride mode's frequency.

외부 유동 소음원에 의한 흡차음재 공간내에서의 소음 예측 (Predicting Noise inside a Trimmed Cavity Due to Exterior Aero-Acoustic Excitation)

  • 정찬희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.569-569
    • /
    • 2014
  • The interior vehicle noise due to the exterior aerodynamic field is an important topic in the acoustic design of a car. The air flow detached from the A-pillar and impacting the side windows are of particular interest as they are located close to the driver / passenger and provides a lower insulation index than the trimmed car body parts. This paper presents a numerical analysis method for a simplified vehicle model. The internal air cavity including trim component are included in the simulation. The car body includes the windshield and two side windows. The body is made of aluminum and trimmed with porous layers. The methodology proposed in this paper relies on two steps: the first step involves the computation of the exterior flow and turbulence induced non-linear acoustic field using CFD Code. The second step consists in the computation of the vibro-acoustic transmission through the window using the finite element vibro-acoustic solver Actran.

  • PDF

받음각 효과를 고려한 발사체 날개단면의 초음속극초음속 비선형 유체유발진동해석 (Nonlinear Flow-Induced Vibration Analysis of Typical Section in Supersonic and Hypersonic Flows with Angle-of-Attack Effect)

  • 김동현;김유성;윤명훈
    • 한국군사과학기술학회지
    • /
    • 제10권4호
    • /
    • pp.12-19
    • /
    • 2007
  • In this study, nonlinear flow-induced vibration(flutter) analyses of a 2-DOF launch vehicle airfoil have been conducted in supersonic and hypersonic flow regimes. Advanced aeroelastic analysis system based on computational fluid dynamics and computational structural dynamics is successfully developed and applied to the present analyses. Nonlinear unsteady aerodynamic analyses considering strong shock wave motions are conducted using inviscid Euler equations. Aeroelastic governing equations for the 2-DOF airfoil system is solved by the coupled integration method with interactive CFD and CSD computation procedures. Typical wedge type airfoil shapes with initial angle-of-attacks are considered to investigate the nonlinear flutter characteristics in supersonic(15). Also, the comparison of detailed aeroelastic responses are practically presented as numerical results.

Vibration-Monitoring of a Real Bridge by Using a $Moir\'{e}$-Fringe-Based Fiber Optic Accelerometer

  • Kim, Dae-Hyun;Lee, Jong-Jae
    • 비파괴검사학회지
    • /
    • 제27권6호
    • /
    • pp.556-562
    • /
    • 2007
  • This paper presents the use of a novel fiber optic accelerometer system to monitor ambient vibration (both wind-induced one and vehicle-induced) of a real bridge structure. This sensor system integrates the $Moir\'{e}$ fringe phenomenon with fiber optics to achieve accurate and reliable measurements. A low-cost signal processing unit implements unique algorithms to further enhance the resolution and increase the dynamic bandwidth of the sensors. The fiber optic accelerometer has two major benefits in using this fiber optic accelerometer system for monitoring civil engineering structures. One is its immunity to electromagnetic (EM) interference making it suitable for difficult applications in such environments involving strong EM fields, electrical spark-induced explosion risks, and cabling problems, prohibiting the use of conventional electromagnetic accelerometers. The other is its ability to measure both low- and high-amplitude vibrations with a constantly high resolution without pre-setting a gain level, as usually required in a conventional accelerometer. The second benefit makes the sensor system particularly useful for real-time measurement of both ambient vibration (that is often used for structural health monitoring) and strong motion such as earthquake. Especially, the semi-strong motion and the small ambient one are successfully simulated and measured by using the new fiber optic accelerometer in the experiment of the structural health monitoring of a real bridge.

정밀연삭시 발생하는 채터진동 실시간 감시에 대한 연구 (Study on the real time chatter detection method during the high accurate grinding process)

  • 김인웅;이선표;최현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.745-750
    • /
    • 2014
  • The chatter vibration in the machining process plays bad role in machining quality such as high roughness as well as tool life and machine failure. And the grinding process under this risk in the fully automated factory is exposed to the unexpected mass machining quality problem. Studying the vibration signal of the hub bearing grinding process, the reason of chatter vibration was explained with the specific machining pattern of chatter. And this study suggests the chatter detecting method in the production line, which is monitoring the peak acceleration level around the natural frequencies of the specimen, and calculating kurtosis value by assuming the chatter is related to the resonance of the specimen. The suggested method was applied to the vehicle hub bearing grinding process and proved good to detecting the chatter induced machining quality problem.

  • PDF

Dynamic response of railway vehicles under unsteady aerodynamic forces caused by local landforms

  • Chen, Zhengwei;Liu, Tanghong;Li, Ming;Yu, Miao;Lu, Zhaijun;Liu, Dongrun
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.149-161
    • /
    • 2019
  • When a railway vehicle runs in crosswinds, the unsteady aerodynamic forces acting on the train induced by the vehicle speed, crosswind velocity and local landforms are a common problem. To investigate the dynamic performance of a railway vehicle due to the influence of unsteady aerodynamic forces caused by local landforms, a vehicle aerodynamic model and vehicle dynamic model were established. Then, a wind-loaded vehicle system model was presented and validated. Based on the wind-loaded vehicle system model, the dynamic response performance of the vehicle, including safety indexes and vibration characteristics, was examined in detail. Finally, the effects of the crosswind velocity and vehicle speed on the dynamic response performance of the vehicle system were analyzed and compared.

저궤도 지구관측 위성의 통계적 에너지 해석 (Statistical Energy Analysis of Low-Altitude Earth Observation Satellite)

  • 우성현;김홍배;임종민;김경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.197-202
    • /
    • 2006
  • The low-altitude earth observation satellite is generally equipped with high performance camera as a main payload which is vulnerable to vibration environment. During the launch process of a satellite, the combustion and jet noise of launch vehicle produce severe acoustic environment and the acoustic loads induced may damage the critical equipments of the satellite including the camera. Therefore to predict and simulate the effect of the acoustic environment which the satellite has to sustain at the lift-off event is very important process to support the load-resistive design and test-qualification of components. Statistical Energy Analysis(SEA) has been widely used to estimate the vibro-acoustic responses of the structures and gives statistical but reliable results in the higher frequency region with less modeling efforts and calculation time than the standard FEA. In this study, SEA technique has been applied to a 3-Dimensional model of a low-altitude earth observation satellite to predict the acceleration responses on the structural components induced by the high level acoustic field in the launch vehicle fairing. In addition, the expected response on each critical component panel was calculated by the classical method in consideration of the mass loading and imposed sound pressure level, and then compared with SEA results.

  • PDF

다목적 실용위성 2호 충격 분리 시험 (Shock Separation Test of KOMPSAT-II)

  • 우성현;김홍배;문상무;김영기;김규선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.1000-1005
    • /
    • 2003
  • The shock separation test simulates the environmental effects of the spacecraft separation from launch vehicle. The shock separation test for a structural model of KOMPSAT-Ⅱ(Korea Multi-Purpose SATellite Ⅱ) was performed in SITC(Satellite Integration & Test Center) launch environmental test hall at KARI(Korea Aerospace Research Institute) to verify the shock test requirement of the spacecraft, to predict the induced acceleration responses on the primary structures and payloads by the explosion of pyre-lock and to perform mechanical fit check. The spacecraft with S/A was mated vertically to LV(Launch Vehicle) adapter simulator via a clamp band, then hoisted and suspended above a foam test bed by four isolation springs secured to the spacecraft hoist fittings to isolate the payload platform shock wave from the sling elements. For separation process, real pyre-devices were used and the time response signals from 60 accelerometers installed on the interested points was acquired and recorded. The SRS responses for each response channels were calculated and the achieved SRS's on the separation plane was reviewed and evaluated in comparison to the ICD(Interface Control Document) value.

  • PDF

공압식 능동형 엔진마운트시스템의 최적 제어매개변수 식별 (Identification of Optimal Control Parameters for a Pneumatic Active Engine Mount System)

  • 김일조;이재천;최재용;김정훈
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.30-37
    • /
    • 2012
  • Pneumatic Active Engine Mount(PAEM) with open-loop control system has been developed to reduce the transmission of the idle-shake vibration induced by engine effectively and economically. A solenoid valve installed between PAEM and vacuum tank is on-off switched by the Pulse Width Modulate(PWM) control signal to decrease the dynamic stiffness of the engine mount. This paper presents the methodology to identify the optimal values of control parameters of a PAEM, i.e, turn-on timing and duty ratio of PWM signal for 6 different idle driving conditions. A scanning algorithm was first applied to the vehicle test to obtain the approximate optimal control parameters minimizing the vibration at front seat rail and at steering wheel. Then the PAEM system identification was fulfilled to find accurate optimal control parameters by using multi-layer neural networks of Levenberg-Marquardt algorithm with vehicle test data.

Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale

  • Li, C.;Sui, S.H.;Chen, L.;Yao, L.Q.
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.279-286
    • /
    • 2018
  • The free longitudinal vibration of a circular truncated nanocone is investigated based on the nonlocal elasticity theory. Exact analytical formulations for tapered nanostructures are derived and the nonlinear differential governing equation of motion is developed. The nonlocal small scale effect unavailable in classical continuum theory is addressed to reveal the long-range interaction of atoms implicated in nonlocal constitutive relation. Unlike most previous studies applying the truncation method to the infinite higher-order differential equation, this paper aims to consider all higher-order terms to show the overall nonlocality. The explicit solution of nonlocal stress for longitudinal deformation is determined and it is an infinite series incorporating the classical stress derived in classical mechanics of materials and the infinite higher-order derivative of longitudinal displacement. Subsequently, the first three modes natural frequencies are calculated numerically and the significant effects of nonlocal small scale and vertex angle on natural frequencies are examined. The coupling phenomenon of natural frequency is observed and it is induced by the combined effects of nonlocal small scale and vertex angle. The critical value of nonlocal small scale is defined, and after that a new proposal for determining the range of nonlocal small scale is put forward since the principle of choosing the nonlocal small scale is still unclear at present. Additionally, two different types of nonlocal effects, namely the nonlocal stiffness weakening and strengthening, reversed phenomena existing in nanostructures are observed and verified. Hence the opposite nonlocal effects are resolved again clearly. The nano-engineers dealing with a circular truncated nanocone-based sensors and oscillators may benefit from the present work.