• Title/Summary/Keyword: Vehicle weight

Search Result 1,295, Processing Time 0.024 seconds

Comparison of Piroxicam Pharmacokinetics and Anti-Inflammatory Effect in Rats after Intra-Articular and Intramuscular Administration

  • Park, Chan Woong;Ma, Kyung Wan;Jang, Sun Woo;Son, Miwon;Kang, Myung Joo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.3
    • /
    • pp.260-266
    • /
    • 2014
  • This study evaluated the pharmacokinetic profile and therapeutic efficacy of piroxicam (PX), a long acting non-steroidal anti-inflammatory drug for the treatment of arthritis, following intra-articular (IA) injection in comparison to the pharmacokinetic profile and therapeutic efficacy of PX after intramuscular (IM) injection. In the pharmacokinetic study in rats, systemic exposure and pharmacokinetic parameters of PX after a single IA dose were compared with systemic exposure and pharmacokinetic parameters of PX after administration of the same dose IM (0.6 mg/kg). The anti-inflammatory and analgesic effects of IA PX were evaluated simultaneously in a monoiodoacetate-induced osteoarthritis rat model. The plasma PX concentration rapidly rose following IA injection, and it was comparable to the plasma PX concentration following IM injection, suggesting the rapid efflux of the drug molecule from the joint cavity. However, in the efficacy study, the IA PX administration significantly reduced the knee swelling by reducing the level of prostaglandin $E_2$ in the joint, compared to that following administration of IA vehicle and after administration of the IM PX dose. In addition, we found that the anti-inflammatory and anti-nociceptive efficacies of IA PX were synergistically increased upon co-treatment with hyaluronic acid (HA), a potent agent for the treatment of osteoarthritis, at the weight ratio of 1:1 or 1:2, and these effects were more pronounced than those following administration of HA or PX alone. In conclusion, this study demonstrated the efficacy of the IA use of PX alone and/or in combination with HA in osteoarthritis.

Design and Optimization Study on the Multi Flight Modes Canard Rotor/Wing Aircraft with Development of Sizing Program (사이징 프로그램 개발을 통한 다중 비행 모드 Canard Rotor/Wing 항공기의 형상 최적설계)

  • Kim, Jong-Hwan;Kim, Min-Ji;Lee, Jae-Woo;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.22-31
    • /
    • 2005
  • A design study was conducted for a new concept aircraft(Canard Rotor/Wing: CRW) that has the capability of dual mode flight, a rotorcraft and a fixed wing mode. The CRW can show a vertical take off/landing and a high speed/efficiency cruise performance simultaneously. It is not surprising to develop a new sizing code for this class of aircraft because conventional sizing codes developed solely for either the rotary wing or the fixed wing aircraft are not adequate to design a dual mode aircraft operated both by the rotary wing through tip jet effux and the fixed wing lift. Thus, a new design code was developed based on the conventional sizing code by adding some features including rotor performance, duct flow, and engine flow analysis, hence could eventually predict the performance of reaction driven rotor, the flight performance and the flight characteristics. The various design parameters were investigated to find their influences on the flight performance then, a small UAV(Unmanned Aircraft Vehicle) of 1500 lbs class was optimally designed to have minimum weight using the developed sizing code.

The Korea Academia-industrial cooperation Society (상용 트럭의 공압 브레이크 응답 특성에 관한 연구)

  • Kim, Jin-Taek;Jung, Do-Gyun;Choi, Pan-Jin;Park, Won-Ki;Park, Chan-Hee;Ryuh, Beom-Sahng;Baek, Byung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.1969-1975
    • /
    • 2012
  • The air brake system used in heavy vehicle is very important from the point of safety due to its weight. In general, air brake system generates relatively long response time and large loss of pressure. It is known that the response time can be decreased by optimal design of brake system, i.e., by increasing the system pressure, minimizing the air line, and material of components. In this study, We developed experimental rigs for the measurement of braking response of heavy duty trucks and compared with the simulated results obtained from the net work fluid flow system analysis code (FLOWMASTER). The effect of several parameters such as, system pressure, diameter of pipe, chamber temperature on the brake response performance have been examined.

Behavior of Strut in Concrete-filled FRP PSC Bridge using FBG Sensors (FBG센서를 이용한 콘크리트 충진 FRP 스트럿 보강 PSC 교량의 스트럿 거동 분석)

  • Chung, Won-Seok;Kang, Dong-Hoon;An, Zu-Og
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.11-15
    • /
    • 2009
  • Recently, a new PSC (Prestressed Concrete) bridge system, which is supported by Concrete-filled fiber-reinforced polymer (CFFRP) strut, has been introduced. This bridge is able to reduce self-weight and increase the width of traditional PSC bridges. However, no relevant research has been reported on local behavior of CFFRP strut in the bridge system. The purpose of this study is to investigate local behavior of CFFRP struts using fiber Bragg grating (FBG) sensors. Field tests were performed to examine the hoop strains and longitudinal strains of the FRP strut under various lateral positions and velocities of a test truck. It has been observed that CFFRP strut is under compression regardless of vehicle speed and location. However, the CFFRP strut is sensitive to the lateral position of vehicles in terms of strain magnitude. Results also indicated that the FBG sensors can faithfully record the hoop and longitudinal strains of the FRP strut without electro-magnetic interference.

A Study on the Characteristics of Simulated Real Driving Emissions by Using Random Driving Cycle (임의주행 사이클을 이용한 실제도로 주행 배출가스 특성 모사에 관한 연구)

  • Kwon, Seokjoo;Kwon, Sangil;Kim, Hyung-Jun;Seo, Youngho;Park, Sungwook;Chon, Mun Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.454-462
    • /
    • 2016
  • This study was conducted in order to estimate the exhaust emissions analysis method of the real driving emission(RDE). The Association for Emissions Control by Catalyst(AECC) has developed a test procedure by using a random cycle method based on the chassis dynamometer. In order to confirm this approach in Korea, Euro 5(DPF), Euro 6(DPF + LNT), and Euro 6(DPF + SCR) were performed on three different vehicles to determine the exhaust gas characteristics of the random cycle, real-road driving test(PEMS), and emission certification driving mode(NEDC). Six different random cycle driving modes were generated by the vehicle specifications(e.g. curb weight, engine power, gear ratio, and maximum acceleration). The NOx emissions were increased in the NEDC, random cycle, and PEMS order in this study regardless of the test vehicles. The random cycle method has the advantage because it utilizes a chassis dynamometer in the laboratories for a repeatable data collection, and it allows any eminent emission improvement checked prior to a real-road driving test with PEMS.

Structure Analysis of Li-ion Battery Using Neutron Beam Source (중성자를 이용한 리튬이온 이차전지 전극 구조분석)

  • Kim, Chang-Seob;Park, Heon-Yong;Liang, Lianhua;Kim, Ji-Young;Seong, Baek-Seok;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • Lithium ion secondary battery has been applied widely to portable devices, and has been studied for application to high power electric cell system such as power tool or hybrid electronic vehicle. The structure change of the electrodes materials occur when lithium ions move between electrodes. Neutron or X-rays can analyze the structure of electrode. The advantage of X-rays is convenient in test. However X-rays is scattered by electron cloud in atoms. Therefore, The elucidation for correct position of lithium is difficult with X-rays because lithium has small atomic weight. Neutron analysis techniques could solve this problem. In this review, We wish to discuss about structure analysis and the principle of structural characterization method using neutron beam source.

A Study on the Working Effect of UAV Hitting Mine Artillery (갱도 포병 타격 시 무인항공기 운용 효과에 관한 연구)

  • Jeong, Young-Ho;Shin, Ki-Tae;Chang, Tai-Woo;Park, Jin-Woo
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.175-182
    • /
    • 2008
  • The enemy will attempt to destroy our troop's core facilities using various fire supports at the beginning of war. Among these fire supports, artillery is given the most deal of weight and mine artillery is a great threat to our troops because it has a superior predominance on the ability of survival. Our troops are planning to introduce UAV (Unmanned Aerial Vehicle) to overcome these difficulties. A study about hitting mine artillery has been developed inside the military field only. However, these studies had been mostly qualitative analyses, thus having limitations in the aspects of non objectiveness and simplicity. We propose a new method to evaluate about working effect of UAV hitting mine artillery. We studied on hitting mine artillery in a quantitative way using CA (Cellular Automata) simulation.

  • PDF

A Study on the Die-casting Process of AM50 Magnesium Alloy (AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구)

  • Kim, Soon-Kook;Jang, Chang-Woo;Lee, Jun-Hee;Jung, Chan-Hoi;Seo, Yong-Gwon;Kang, Choong-Gil
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.516-523
    • /
    • 2006
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automobile industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modern vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die-casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. In this study, step-dies and flowability tests for AM50 were performed by die-casting process according to various combination of casting pressure and plunger velocity. We were discussed to velocity effect of forming conditions followed by results of microstructure, FESEM-EDX, hardness and tensile strength. Experimental results represented that the conditions of complete filling measured die-casting pressure 400 bar, 1st plunger velocity 1.0 m/s and 2nd plunger velocity 6.0 m/s. The increasing of 2nd plunger velocity 4.0 to 7.0 m/s decreased average grain size of $\alpha$ phase and pore. It was due to rapid filling of molten metal, increasing of cooling rate and pressure followed by increased 2nd plunger velocity. The pressure should maintain until complete solidification to make castings of good quality, however, the cracks were appeared at pressure 800bar over.

Estimation of Dynamic Response of Advanced Composite Material Decks for Bridges Application under Various Vehicle Driving Velocities (복합재료 교량 바닥판의 주행속도에 따른 동적응답 평가)

  • 천경식;장석윤
    • Composites Research
    • /
    • v.16 no.6
    • /
    • pp.23-32
    • /
    • 2003
  • Applications of advanced composite material in construction field are tending upwards and development of all composite material bridges is making progress rapidly in home and abroad due to their high strength to weight ratio. This paper formulated the dynamic responses of the laminated composite structures subjected to moving load and analyzed the various dynamic behaviors using the finite element method. The nondimensionalized natural frequencies of a simply supported square-laminated composite plate are considered for verifications. Mode superposition and Newmark direct integration method are applied for moving load analysis. For structural models, dynamic magnification factor calculated for various velocities of the moving load and displacements characteristics of laminated composite structures due to the moving load are investigated theoretically Numerical results are presented to study the effects of lamination scheme, stacking sequence, and fiber angle for laminated composite structures during moving load. The various results on moving load and lamination through numerical analysis will present an important basic data for development and grasp the behavior of all composite material bridges.

Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV (고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석)

  • Lee, Yang Ji;Rhee, Dong Ho;Kang, Young Seok;Lim, Byoeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.