• Title/Summary/Keyword: Vehicle test

Search Result 3,964, Processing Time 0.038 seconds

Study on Ejection Mitigation Impact Test about correlation between Vehicle and B.I.W(Body In White) Condition (FMVSS 226 Ejection Mitigation Impact Test의 시험품 단순화에 따른 인자들의 상관 관계에 대한 연구)

  • Kang, Mooncheol;Shin, Hyunhack;Oh, Hyungjoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.4
    • /
    • pp.16-19
    • /
    • 2015
  • FMVSS226 Ejection Mitigation Impact Test is usually performed by real vehicle. But it is necessary to perform the test using by Reinforced B.I.W. with considering vehicle developing timing and roof rail airbag (RRAB) supplier capacity. We sometimes need tendency (quick data) instead of slow accurate data to fix RRAB design as proper timing. Test with Reinforced B.I.W. is helpful saving time and cost. But it should be confirmed how much different between vehicle conditioned test result and Reinforced B.I.W. conditioned test result. There are some points to be improved even in the test with vehicle. Understanding of deviation of Reinforced B.I.W. conditioned test result from vehicle conditioned test result is needed to get benefits with using Reinforced B.I.W. conditioned in the test.

Pneumatic Test of Components and Systems of Launch Vehicle (발사체 구성품 및 시스템의 공압시험)

  • Lim, Ha-Young;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.904-907
    • /
    • 2011
  • Various types of gases and propellants are used in launch vehicle. In order to fulfill the mission of the launch vehicle, the components and systems used in launch vehicle should ensure flawless operation in these environments. The pneumatic test is the test performed using compressed gas to prove requirements of the components and systems. This paper describes the requirements of the gas quality for pneumatic test, leak test method, and pneumatic test of the launch vehicle.

  • PDF

Study on FWDB Frontal Vehicle Crash Test (FWDB 정면충돌시험에 대한 연구)

  • Kim, Joseph;Beom, Hyen-Kyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.31-37
    • /
    • 2010
  • In proportion to increasing interest in vehicle safety, many country have regulated vehicle safety and performed NCAP(New Car Assessment Program). However vehicles which had good results in these compliance and NCAP frontal crash test have caused problems such as the fork effect and over-riding in real car-to-car accidents. To complement these issues, new frontal crash test modes using new barrier like FWDB and PDB have been developed by EEVC WG15. In this paper, FWDB frontal crash test was performed and the result was compared with the full frontal crash test using the rigid wall in order to comprehend the characteristic of FWDB. The results of FWDB test were compared with one of USNCAP and KNCAP. Using USNCAP data, vehicle performance like deformation and wall force were studied. A comparative study of dummy injuries was made by using KNCAP result. The results showed that vehicle performance of FWDB test like displacement and effective acceleration was similar in spite of absorbing energy of FWDB due to the greater vehicle deformation of rigid wall test. In FWDB test, driver dummy head bottomed out but most of injuries were superior to the injury of rigid wall test.

Validation of vehicle dynamic no del by using the optimization tool (최적화 툴을 이용한 동특성 해석 모델 검증)

  • Park, Kil-Bae;Seung, Jae-Ho;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1557-1565
    • /
    • 2009
  • According to the GM/RT2141, to assess the safety of vehicle, the validated the vehicle dynamic model should be applied. The validation of the vehicle model is against the static test, some kind of vehicle type test results have been used to determine the suspension characteristics and the vehicle dynamic characteristics. To validate the vehicle model and the test results, first the test results has been analysed as to specified the suspension characteristics and than the parameters to related with the test result has to be adjusted to show the same results of the test. In this process the parameters of vehicle model have been determined to show the coherence of the two results of the simulation and the test by trial & error. In this report, the optimization tool has been introduced in this model validation process and shows the efficient and well validated model.

  • PDF

Validation of the vehicle dynamic model for the static vehicle testing (정차상태 시험 결과를 이용한 차량동특성 해석 모델의 검증)

  • Park, Kil-Bae;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.317-325
    • /
    • 2011
  • Vehicle model validation for the static vehicle testing has been done by comparison of the simulation results and test results and the parameters of the vehicle model to be used in the simulation have been adjusted to reflect the measured behaviour. The vehicle model fort the simulation should be validated by suitable tests and/or practical experience. The static vehicle test used to validate the vehicle model are the weight measurement, the wheel offloading test, the bogie rotational resistance test and the sway test. Finally, the computer simulation model has been validated and using the validated vehicle model the acceptance of the vehicle safety of the resistance to flange climbing derailment at low speed can be examined.

  • PDF

Virtual Durability Test Procedures and Applications on Design of a Vehicle Suspension Module (자동차 현가모듈의 내구설계를 위한 가상 내구시험기법 정립 및 응용)

  • 손성효;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.144-150
    • /
    • 2003
  • Recently, the virtual test techniques using computer simulation play an important part in the vehicle development procedures in order to reduce the development time and cost by replacing the physical prototypes of the vehicle components or systems with the virtual prototypes. In this paper, virtual durability test procedures for the vehicle suspension module have been developed. Virtual durability test consists of dynamic simulation computing load history of suspension components, fatigue analysis computing the life of components. A vehicle suspension module for dynamic simulation are developed and validated by comparison with the measured data obtained from the field vehicle test. And on the basis of the validated vehicle suspension model, fatigue analysis has been performed for the virtual durability design of the suspension components.

A Study on the Test Method of Autonomous Vehicle for Fixed Targets (고정목표에 대한 자율주행자동차 시험방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.3
    • /
    • pp.6-16
    • /
    • 2022
  • Recent, the issue of the fourth industrial revolution triggered by technological advances has changed the automobile industry centered on internal combustion engines, and quantitative growth of the global automobile market, which has grown rapidly, has been slowing since 2015. These advances in technology are expected to develop beyond the advanced driver assistance system to autonomous driving technology. According to SAE-J3016 published by the Society of Automotive Engineers, the technology of autonomous vehicles is divided into a total of six stages according to the driver's intervention and automation level from 0 to 5. Securing safety for autonomous vehicles is important. But, research on safety evaluation theory and autonomous vehicle evaluation method based on real vehicle test is insufficient. In this study, the longitudinal distance theory equation and continuous test scenario were proposed for the test method of autonomous vehicles for fixed targets, and the real vehicle test was conducted. When comparing the theoretical values compared to the measured values, it was determined that it was reliable with a minimum error rate of 0.484% and a maximum error rate of 7.391%. Using the proposed theoretical equation, it is judged that it can be used as a safety evaluation method in an environment where real vehicle test is not possible because it can grasp the trend in the longitudinal direction in the development stage.

Test Bed for Vehicle Longitudinal Control Using Chassis Dynamometer and Virtual Reality: An Application to Adaptive Cruise Control

  • Mooncheol Won;Kim, Sung-Soo;Kang, Byeong-Bae;Jung, Hyuck-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1248-1256
    • /
    • 2001
  • In this study, a test bed for vehicle longitudinal control is developed using a chassis dynamometer and real time 3-D graphics. The proposed test bed system consists of a chassis dynamometer on which test vehicle can run longitudinally, a video system that shows virtual driver view, and computers that control the test vehicle and realize the real time 3-D graphics. The purpose of the proposed system is to test vehicle longitudinal control and warning algorithms such as Adaptive Cruise Control(ACC), stop and go systems, and collision warning systems. For acceleration and deceleration situations which only need throttle movements, a vehicle longitudinal spacing control algorithm has been tested on the test bed. The spacing control algorithm has been designed based on sliding mode control and road grade estimation scheme which utilizes the vehicle engine torque map and gear shift information.

  • PDF

A Study on the Comparison for the Child Occupant Safety from Frontal Crash Test Protocol (정면충돌 시험방법에 따른 어린이 탑승객 충돌안전성 비교연구)

  • Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.33-38
    • /
    • 2016
  • Recently, development in vehicle safety could increase interest in children's safety in vehicle collisions. But the research of children safety in vehicle collisions is not being conducted as many as that of adult's. Especially the study for the vehicle crash was not much. This study focused on the comparison of child safety between test protocols to evaluate children's safety in crash test. Injuries of Q6 and Q10 dummy were evaluated using FFRB (Full frontal rigid barrier) test and 40% ODB (Offset deformable barrier) test with one model vehicle. Even though the limit number of test, the tendency of injury criteria of Q6 and Q10 dummy between the test protocols was not conformed but injury criteria of Q6 and Q10 were not same between FFRB and 40% ODB.

A Study on Electromagnetic Interference of Electric Vehicles with Variations of Charging Device Inlet Location (전기자동차 충전구 위치에 따른 전자파 방사특성에 관한 연구)

  • Gwon, Sunmin;Woo, Hyungu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.694-701
    • /
    • 2016
  • According to revolutionary developments in automobile technologies, eco-friendly advanced vehicles (hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc.) are rapidly increasing. The electromagnetic compatibility is getting more important for development of a vehicle because those advanced vehicles are driven by electric energy and equipped with more electric systems. In general, electromagnetic compatibility tests consist of an electromagnetic interference(EMI) test and an electromagnetic susceptibility(EMS) test. EMI test of the electric vehicles are needed not only in driving mode but also in charging mode because they must be recharged by much electric energy for driving. Depending on vehicle manufacturers, the charging device type and the location of charging device inlet in electric vehicles are various. In this paper, in order to investigate EMI of electric vehicles in charging mode in consideration of the direction of measuring antenna and the location of charging device inlet, a series of electromagnetic emission tests are conducted using three electric vehicles (neighborhood electric vehicle, electric vehicle and electric vehicle-bus). The test results show that electromagnetic emission measurements in charging mode are dependent on the direction of measuring antenna and the location of charging device inlet.