• 제목/요약/키워드: Vehicle stability control system

검색결과 355건 처리시간 0.023초

20자유도 자동차모델을 이용한 가상 주행 시뮬레이터의 개발 (Development of a Virtual Driving Simulator Using 20-DOF Vehicle Model)

  • 김형내;김석일
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.40-47
    • /
    • 1998
  • Recently, the various driving simulator have been used widely to analyze the handling performance of vehicle and to verify the motion control algorithm of vehicle. In this study, a virtual driving simulator based on the 20-DOF vehicle model is realized to estimate the handling performance and stability of a 4WS (Four-wheel-steering) and/or 4n(Four-wheel-driving) vehicle. Especially the DC motor controlled 4WS actuator is modelled in order to reflect the effect of the responsiveness of actuator on the handling performance and stability. And the realized simulator can be applied to develope a real time simulation system for designing and testing the real vehicles.

  • PDF

퍼지논리를 이용한 차량 구동력 제어 시스템 (Vehicle Traction Control System using Fuzzy Logic Theory)

  • 서영덕;여문수;이승종
    • 한국자동차공학회논문집
    • /
    • 제6권5호
    • /
    • pp.138-145
    • /
    • 1998
  • Recently, TCS(Traction Control System) is attracting attention, because it maintains traction ability and steerability of vehicles on low-$\mu$ surface roads by controlling the slip rate between tire and road surface. The development of TCS control law is difficult due to the highly nonlinearity and uncertainty involved in TCS. A fuzzy logic approach is appealing for TCS. In this paper, fuzzy logic controller for TCS is introduced and evaluated by the computer simulation with 8 DOF vehicle model. The result indicate that the fuzzy logic TCS improves vehicle's stability and steerability.

  • PDF

An Adaptive Flight Control Law Design for the ALFLEX Flight Control System

  • Imai, Kanta;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.148.5-148
    • /
    • 2001
  • In this report, an adaptive flight control law based on a linear-parameter-varying (LPV) model is presented for a flight control system. The control system is designed to track an output of a vehicle to a reference signal from the guidance system, which generates a reference flight path. The proposed adaptive control law adjusts the controller gains continuously on line as flight conditions change. The obtained adaptive controller guarantees global stability over a wide flight envelope. Computer simulation involving six-degree-of-freedom nonlinear flight dynamics is applied to Japan´s automatic landing flight experimental vehicle (ALFLEX) to examine the effectiveness of the proposed adaptive flight control law.

  • PDF

전륜 제동력 및 전륜 조향각을 이용한 SUV 차량의 통합운동제어시스템 개발 (Integrated Dynamics Control System for SUV with Front Brake Force and Front Steering Angle)

  • 송정훈
    • 한국기계가공학회지
    • /
    • 제21권5호
    • /
    • pp.22-27
    • /
    • 2022
  • An integrated front steering system and front brake system (FSFB) is developed to improve the stability and controllability of an SUV. The FSFB simultaneously controls the additional steering angle and front brake pressure. An active front steering system (AFS) and an active front brake system (AFB) are designed for comparison. The results show that the FSFB enhances the lateral stability and controllability regardless of road and running conditions compared to the AFS and AFB. As a result, the yaw rate of the SUV tracks the reference yaw rate, and the side slip angle decreases. In addition, brake pressure control is more effective than steering angle control in improving the stability and steerability of the SUV on a slippery road. However, this deteriorates comfort on dry or wet asphalt.

CAN 통신을 이용한 차량 내 자동 온도조절 시스템 (In-Vehicle Auto temperature control System by CAN Network)

  • 김장주;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.90-93
    • /
    • 2009
  • 최근 차량용 네트워크 시스템으로 사용되고 있는 CAN(Controller Area Network)은 많은 ECU들이 필요한 미래형 스마트차량에 적합한 네트워크 프로토콜로서 안정성과 신뢰성을 보장해주며, 많은 ECU들의 장착으로 Wiring Harness의 공간과 중량이 늘어남으로 인해 발생되는 에너지 소비와 비용의 증가를 대폭 줄일 수 있는 것으로 나타났다. 본 논문에서는 CAN프로토콜을 이용하여 미래형 스마트 자동차에 요구되는 편의주행, 쾌적주행을 위해 Air conditioner 와 Heater를 제어하여 차량 내부 온도를 운전자의 요구에 맞도록 자동으로 제어할 수 있는 시스템을 구현하고자 한다.

  • PDF

슬라이딩 모드 제어를 이용한 시각센서 기반의 차선변경제어 시스템 설계 (Vision-Based Lane Change Maneuver using Sliding Mode Control for a Vehicle)

  • 장승호;김상우
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.194-207
    • /
    • 2000
  • In this paper, we suggest a vision-based lane change control system, which can be applied on the straight road, without additional sensors such as a yaw rate sensor and a lateral accelerometer. In order to reduce the image processing time, we predict a reference line position during lane change using the lateral dynamics and the inverse perspective mapping. The sliding mode control algorithm with a boundary layer is adopted to overcome variations of parameters that significantly affects a vehicle`s lateral dynamics and to reduce chattering phenomenon. However, applying the sliding mode control to the system with a long sampling interval, the stability of a control system may seriously be affected by the sampling interval. Therefore, in this paper, a look ahead offset has been used instead of a lateral offset to reduce the effect of the long sampling interval due to the image processing time. The control algorithm is developed to follow the desired trajectory designed in advance. In the design of the desired trajectory, we take account of the constraints of lateral acceleration and lateral jerk for ride comfort. The performance of the suggested control system is evaluated in simulations as well as field tests.

  • PDF

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Evaluation of electronic stability controllers using hardware-in-the-loop vehicle simulator

  • Emirler, Mumin Tolga;Gozu, Murat;Uygan, Ismail Meric Can;Boke, Tevfik Ali;Guvenc, Bilin Aksun;Guvenc, Levent
    • Advances in Automotive Engineering
    • /
    • 제1권1호
    • /
    • pp.123-141
    • /
    • 2018
  • Hardware-in-the-loop (HiL) simulation is a very powerful tool to design, test and verify automotive control systems. However, well-validated and high degree of freedom vehicle models have to be utilized in these simulations in order to obtain realistic results. In this paper, a vehicle dynamics model developed in the Carsim Real Time program environment and its validation has been performed using experimental results. The developed Carsim real time model has been employed in the Tofas R&D hardware-in-the-loop simulator. Experimental and hardware-in-the-loop simulation results have been compared for the standard FMVSS No. 126 test and the results have been found to be in good agreement with each other. Two electronic stability control (ESC) algorithms, named the Basic ESC and the Integrated ESC, taken from the earlier work of the authors have been tested and evaluated in the hardware-in-the-loop simulator. Different evaluation methods have been formulated and used to compare these ESC algorithms. As a result, the Integrated ESC system has been shown superior performance as compared to the Basic ESC algorithm.

퍼지 제어를 이용한 수소 상용차 전력 분배 시뮬레이션 (Commercial Hydrogen Vehicle Power Distribution Simulation Using Fuzzy Control)

  • 한재수;한재수;우종빈;유상석
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.369-380
    • /
    • 2023
  • There is no clear standard for estimating the power distribution of fuel cells and batteries to meet the required power in hydrogen electric vehicles. In this study, a hydrogen electric vehicle simulation model equipped with a vehicle electric component model including a fuel cell system was built, and a power distribution strategy between fuel cells and batteries was established. The power distribution model was operated through two control strategies using step control and fuzzy control, and each control strategy was evaluated through data derived from the simulation. As a result of evaluation through the behavior data of state of charge, fuel cell current and balance of plant, fuzzy control was evaluated as a proper strategy in terms of control stability and durability.

Micro computer를 이용한 자동차용 brake 시험 자동화 system에 대한 고찰 (Micro computer-controlled automatic test method for automotive brake system)

  • 정화영
    • 오토저널
    • /
    • 제9권5호
    • /
    • pp.6-18
    • /
    • 1987
  • Owing to remarkable development in automotive industry, vehicle performance comes close to perfection and guarantee of stability is getting emphasized in accordance with high speed trend in vehicle. In recent years, the utilization of automatic test method for research and development of automotive brake system is being propelled actively, which pursue whole automatic control from simple measurement to data acquisition. The main subject of this paper is to make a brief explanation on Micro computer controlled Automatic Test Method for Automotive Brake System which makes it possible to test with high accuracy and speed.

  • PDF