• Title/Summary/Keyword: Vehicle speed profile

Search Result 95, Processing Time 0.029 seconds

Characteristics Analysis of Automatic Transmission for the Wheel-Loader with Shift Control Algorithm (변속제어 알고리즘을 적용한 휠로더 자동변속기 특성 해석)

  • Oh, Joo-Young;Yun, Ung-Kwon;Park, Young-Jun;Lee, Geun-Ho;Song, Chang-Seop
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.639-645
    • /
    • 2011
  • Wheel-loader is a construction vehicle for uploading soil or sand into truck and transportation of materials, which requires large driving power and high rotational speed. To improve the working efficiency, the operator has to shift gears and control levers for bucket & boom simultaneously. Therefore, the automatic transmission has been introduced to enhance operator's convenience and enable effective operation. To develop the automatic transmission for the wheel-loader, technologies such as gears and a clutch-pack design and shift algorithm are required for improvement of shift quality. In this paper, the shift algorithm for the wheel-loader was developed and its shift pattern was analyzed. As the shift control is affected by the pressure profile for the clutch control, the shift quality depending on the pressure profile has been evaluated using experiment and simulation model analysis.

A Study on the dynamic behavior of rail due to dipped joints (레일이음매의 동적거동에 대한 연구)

  • Kang, Yun-Suk;Yang, Shin-Chu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.328-333
    • /
    • 2002
  • When vehicle travelling along the track which has irregularity such as vertical profile, dynamic forces arise at the Wheel/Rail contact patch by wheel/rail interaction. In particular short wavelength irregularities on dipped joint and small stiffness of connecting rail bring about intense wheel/rail dynamic effects at higher speed. In the paper, a new model for dipped joint rail is developed to study dynamic behavior of track. A cusp behavior on dipped joint was defined by its amplitude and decay factor, which was presented by FRA track classes. The result of case study are presented, which show wheel rail contact force in each track classes, train operation speed and bending flexible rigidity ratio of fishplates which are connecting the rail.

  • PDF

A Study on individual Diesel Particles by SEM/EDX (SEM/EDX를 이용한 디젤 분진의 입자별 분석)

  • 김혜진;이종태;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.175-182
    • /
    • 1999
  • Scanning electron microscopy (SEM) has played an important role in receptor modeling area because it is a powerful tool for characterizing individual particles. The purpose of the study was to classify individual diesel particles base on statistical analysis and image analysis by SEM/EDX (energy dispersive x-ray analyser). The diesel particles were sampled by both a modified CVS 75 mode and a high speed mode with a chassis dynamometer. The SEM/EDX system provides various physical parameters including particle's particle diameter and chemical information. Thus density and mass of the diesel particle were estimated cased on its chemical composition and further fractal dimensions of the diesel particle were obtained by the Hurst exponent method. The fractal dimension in the sample of modified CVS 75 mode was higher than the high speed mode. Finally, mass fractions for a diesel vehicle as a source profile were estimated cased on a particle class concept.

  • PDF

Generation of Speed Profile for the Control of a Personal Rapid Transit Vehicle and the Design of the Control System for the Speed Tracking (개인고속이동 시스템의 차량제어용 속도 프로파일 생성과 속도 추종을 위한 제어 시스템 설계)

  • Shin, Kyung-Ho;Lee, Jea-Ho;Kim, Yong-Kyu;Lee, Jun-Ho
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1423-1429
    • /
    • 2006
  • 본 논문에서는 개인고속이동(PRT: Personal Rapid Transit)시스템에서 차량의 속도를 제어하기 위해서 필요한 속도 프로파일의 생성과, 생성된 속도 프로파일의 추종 특성을 관찰하기 위한 제어 시스템의 구축에 관해서 다룬다. 제어 시스템을 구축하기 위해서 Labview Real Time Module과 Matlab/Simulink 를 채용한다. 제어기준신호인 속도 프로파일은 간단한 선형방정식을 이용해서 생성할 수 있으며 방정식에 포함되어 있는 변수들에 대한 정보를 얻기 위해서 가상의 선행차량으로부터 feedback되는 차량의 상태정보를 이용한다. 간단한 모의시험을 통해서 속도 프로파일 추종특성의 평가를 위한 제안된 제어시스템의 효용성을 보인다.

  • PDF

Development of a Technique for Detection of Contact Wire Wear using High-Speed Camera (고속카메라를 이용한 전차선 마모 검측 영상처리 알고리즘 개발)

  • Park, Young;Cho, Yong-Hyeon;Cho, Chul-Jin;Kim, Won-Ha
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.632-637
    • /
    • 2010
  • The measurement of contact wire wear in electric railways is one of the key test parameters to increase speed and maintain safety in electric railways. Wear caused by continuous interaction between pantographs and contact wires has a negative effect on current collection quality and severely damaged contact wires might cause hazardous accidents. This paper introduces a non-contact optical-based contact wire wear measuring system that will replace conventional wear detecting methods conducted by maintenance vehicles or workers. The system is implemented by high-speed cameras that can collect images of contact wires during vehicle operation, a laser used to create images profile of the contact wire surface, and a computer used to process the collected images. The proposed system is designed to assist maintenance of overhead contact lines by creating geometrically plotted images of contact wires to detect contact wire wear during operation on conventional lines or high-speed lines.

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

A Study on the Ride Quality Enhancement of the High-speed Electric Multiple Unit (동력분산형 고속열차의 승차감 개선에 관한 연구)

  • Jeon, Chang-Sung;Kim, Sang-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.561-567
    • /
    • 2018
  • This study was carried out to improve the ride quality of high-speed electric multiple unit. Through dynamic analysis of the HEMU-430X, the range of the equivalent conicity with a critical speed of 300 km/h was between 0.05 and 0.25. The initial adopted wheel profile of HEMU-430X was S1002. The equivalent conicity of S1002 with the mileage of more than 40,000 km was about 0.033 and it was confirmed that XP55 is more suitable for stable operation because XP55 has the equivalent conicity of over 0.061. In order to improve ride quality of high-speed electric multiple unit, the change of installation angle of the yaw damper was suggested from $7.35^{\circ}$ to $0^{\circ}$. From sensitivity analysis and optimization, the air spring lateral and vertical stiffness was suggested to be reduced by 30% and the secondary vertical and lateral damper damping coefficient was increased by 50%. By applying this, it was expected that the car body acceleration could be improved by about 20% on average. The HEMU-430X's yaw damper installation angle was changed to $0^{\circ}$ and the damping coefficient of the lateral damper was increased by 30%. When the test run was carried out at the speed of 300 km/h on the Kyungbu high-speed line, the vehicle lateral acceleration had improved by 34.3%. The effect of additional improvement measures proposed in this paper will be tested in the on track test. The riding quality improvement process used in this study can be used to solve ride quality problems that can occur in commercial operation of high-speed electric multiple unit in the future.

Simulation Experiments for Ubiquitous Traffic Flow Management (유비쿼터스 환경에서 최적교통관리를 위한 시뮬레이션 평가)

  • Park, Eun-Mi;Go, Myeong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.71-77
    • /
    • 2009
  • The ubiquitous transportation system environments make it possible to collect each vehicle's position and velocity data and to perform more sophisticated traffic flow management at individual vehicle or platoon level through V2V and V2I communications. The VISSIM simulation experiments were performed to address the issues in developing the preventive congestion management algorithm proposed in the companion paper. Traffic flow stability measures were developed based on the platoon profile, which enables us to explicitly consider traffic flow stability in traffic flow management. Traffic flow management strategies according to the traffic flow states were proposed: Maintain the equilibrium speed for free flow state, maintain the traffic flow stability by platoon control for critical state, and surpress the shock wave propagation for congested state. And finally potential benefit of the proposed traffic flow management scheme was evaluated based on the simulation experiment results. It is considered that extensive field experiments should be performed to confirm the simulated results.

Co-simulation for Dynamic Characteristic Analaysis of Solenoid Valve for Vehicle (자동차용 솔레노이드 밸브의 동특성을 위한 연성해석)

  • Kim, Ki-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3821-3826
    • /
    • 2014
  • This paper proposes a methodology for developing the performance of a solenoid valve for vehicles based on the dynamic analysis model by an electromagnetic field. The high performance solenoid model with a low current and high thrust was induced through the shape optimal design of the yoke and plunger. To perform the dynamic analysis of the solenoid valve, the input current profile was analyzed. The speed and thrust information was analyzed by FEM with this current profile. The co-simulation method of the circuit model of control logic and electromagnetic model of the solenoid valve was also proposed to analyze the performance with several current patterns. Finally, the performance of the original model and optimal one was compared.

Pressure Control of Lockup Solenoid Valve for Automatic Transmission (자동변속기 록업솔레노이드밸브의 압력제어)

  • Park, Kwan-su-;Chung, Soon-Bae;Lee, Kyo-Il-
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.472-477
    • /
    • 1994
  • The lockup clutch is embeded on torque converter of automatic transmission to prevent the efficiency deterioration of torque converter in high speed. For improving fuel consumption rate, it is desirable to engage the lockup clutch earlier. But, it results in degrading shift quality, due to the transient torque. The transient clutch pressure which affects the shifting quality, should be controlled properly. In this study, to solve the problem, it is analysed the hydraulic circuit of lockup system including line pressure regulating circuit, established the nonlinear model, and designed the PID controller. The line pressure is supplied to the lockup clutch through the lockup control valve by switching the lockup solenoid valve on. In order to control the transient pressure actively, it is needed to control the lockup solenoid valve by closed loop control. The lockup solenoid valve is 2-way on-off valve, and is adequate for PWM control. To reduce the pressure chattering, the carrier frequency is increased. Target pressure profile is computed from optimized velocity difference profile throuth dynamic equation of vehicle system.

  • PDF