• Title/Summary/Keyword: Vehicle source

Search Result 653, Processing Time 0.028 seconds

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

Evaluation of Vehicle Seat Rattle Noise Using Coherence Function Technique (기여도 함수 기법에 의한 차량 시트의 래틀 노이즈 규명)

  • Seo, Bum-June;Jeong, Jae-Eun;Park, Goon-Dong;Kim, Hak-Gyun;Park, Sang-Do;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.8
    • /
    • pp.774-780
    • /
    • 2011
  • Recently, customers have been concerned about vehicle NVH depending on vehicle designing and manufacturing technologies development. In choosing vehicle, vehicle NVH is becoming the most important factor to customers. Especially, a seat is the final stage of vibration transfer path to passengers from all sources of vibration like engine, transmission and etc. And seat is the nearest component from driver's ear. For this reason, seat is the most important component that directly related to ride comfort for passengers. And driver can be influenced sensitively by BSR caused by seat. Thus, evaluating the vibration characteristics of vehicle seat and BSR caused by vehicle seat is necessary to reduce the seat BSR. The rattle noise occurred from seat has evaluated through sound source visualization and multi-dimensional spectral analysis - coherence function technique in this paper. Vibration characteristics of the seat has verified through modal test.

Assessment of BSR Noise in a Vehicle Cabine (자동차 실내 BSR 소음의 정량적 평가)

  • Shin, Su-Hyun;Kim, Duck-Whan;Lee, Gwang-Se;Choi, Young-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.662-663
    • /
    • 2014
  • In most vehicle manufactures have traditionally relied on find-fix method of human auditor, mainly due to variation excitation source. To solve the BSR noise, the requirements for BSR test are presented in terms of detection of noise source, analysis of time-frequency and sound pressure, sound quality for noise. A number of new technology direction, particularly in the field of noise source identification application and psycho-acoustics from the Zwicker's sound quality parameter, the computed objective sound metrics and subjective jury test result.

  • PDF

Experiments on the noise source identification from a moving vehicle (이동하는 운송체의 외부소음원 측정에 관한 실험적 연구)

  • Hong, Suk-Ho;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.238-243
    • /
    • 2008
  • Several experimental techniques for identifying the noise sources distributed over a moving vehicle have been developed recently and are used to design a low noise vehicle. The beamforming method, which uses phase information between several microphones to localize the source position, is proved to be one of the promising techniques applicable even under complicated test environments. In this study a beamforming algorithm is developed and applied to measure the dominant noise sources on a passenger car passing by. Unlike the acoustic signals from a stationary noise source, the sound generated from a moving source is distorted due to the Doppler effects. The information about the speed and relative position of the vehicle are used to eliminate the Doppler effects from the measured acoustic signal by using a de-Dopplerization algorithm. The noise generated from a moving vehicle can be grouped in many ways, however, tire noise and the noise generated from the engine are distinguishable at the speeds being tested.

Receptor Model(CMB) and Source Apportionments of VOCs in Seoul Metropolitan Area (수용모델(CMB)을 이용한 수도권 VOCs의 배출원별 기여율 추정)

  • Han, Jin-Seok;Hong, Y.D.;Shin, S.A.;Lee, S.U.;Lee, S.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.227-235
    • /
    • 2005
  • Source contribution for VOCs collected in Seoul metropolitan area was conducted using PAMs (Photochemical assessment monitoring system) data and CMB(Chemical Mass Balance) model8.0, in order to estimate spatial and temporal variations of VOCs source contribution in that area, and also to compare with corresponding emission inventory. VOCs data used in model calculation were collected at 6 different sites of PAMs(Seokmori, Guwoldong, Simgokdong, Bulgwangdong, Jeongdong and Yangpyeong) and 22 out of 56 VOCs species were analyzed from June 2002 to march 2003 and used for CMB model estimation. The result showed that vehicle exhaust, coating and energy combustion were important sources of VOCs in Seoul metropolitan area, averaging 32.6%, 25.5% and 25.1%, respectively. In this study as well as other references, it was revealed that vehicle exhaust is the main contributor of urban area VOCs, but there is remarkable contrast between emission inventory and model estimation. Vehicle exhaust portion is seriously underestimated while coating is usually overestimated in emission estimates, compared to CMB results. Therefore, it is considered to assert and confirm the uncertainty of emission estimates and clarify the distinction between two other source apportionment methods.

The omni-directional sound source analysis for evaluating the vehicle sound insulation performance

  • Takashima, Kazuhiro;Nakagawa, Hiroshi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.484-488
    • /
    • 2007
  • In this paper, the measurement system using the microphone array developed for analyzing cabin noise of the vehicle and its applications are discussed. The sensor is a three dimensional microphone array, the microphones and cameras are equipped on the rigid sphere. The cameras are used for acoustic visualization. As applications, the experiments in both reverberation chamber and anechoic chamber are discussed. These results show that this system is very useful to evaluate or improve the vehicle sound insulation performance.

  • PDF

Source Localization of Induced Noise from a Rolling Wheel of Ground Vehicle (회전하는 바퀴 주위의 유동소음원)

  • Kwon Oh-Sub;Jang Keun-Jeoung;Lee Seungbae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.759-762
    • /
    • 2002
  • Automobile aeroacoustics Is a developing area of technology where experimental and theoretical tools are being continuously refined to understand, analyze and modify the noise-generating mechanisms in the vehicle flow. Main sources of ground vehicle exterior noise are the tires (tire/road interaction) and the unsteady flow field around the vehicle. In this study, the sound source localization of a rolling tire was applied to the measurement of radiated sound by using an acoustic mirror system. A possible flow pattern that develops is suggested based on detailed wind tunnel investigations with a rotating wheel in contact with a moving belt.

  • PDF

Source Identification and Estimation of Source Apportionment of Ambient PM2.5 at Western National Park Site in USA (미국 서부 국립공원 지역의 미국 서부 국립공원 지역의 PM2.5에 대한 오염원 확인 및 기여도 추정)

  • Hwang, In-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.1
    • /
    • pp.21-33
    • /
    • 2010
  • The objective of this study was to estimate the $PM_{2.5}$ source apportionment at the Pinnacles National Monument IMPROVE site in western coastal USA. The PMF was applied to identify the existing sources and apportion the $PM_{2.5}$ mass to each source. To analyze local source impacts from various wind directions, the NPR analysis was performed using source contribution results with the wind direction values measured at the site. Also, PSCF was applied to identify the locations by point sources relative to the back trajectories. A total of 1,634 samples were collected from March 1988 to May 2004 by IMPROVE sampler and 32 chemical species were analyzed by PIXE, PESA, XRF, IC, and TOR methods. The PMF modeling identified seven sources and the average mass was apportioned to gasoline vehicle, secondary sulfate, aged sea salt, secondary nitrate, wood/field burning, diesel emission, and soil, respectively. In this study, the average mass was apportioned to gasoline vehicle (33.0%), secondary sulfate (25.7%), aged sea salt (17.8%), and secondary nitrate (10.1%). Also, this study suggests the possible role for source apportionment study of $PM_{2.5}$ at similar areas such as wildness, national park, and coastal areas in Korea.

Development of Wind Noise Source Identification Technique for Vehicle Underbody (자동차 하부 공력소음 파악 기술의 개발)

  • 이강덕;정승균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.353-356
    • /
    • 2003
  • Acoustic holography is adopted in identifying the noise sources of a vehicle's underbody. Wind noise from a vehicle's underbody accounts for a large portion of the overall noise level due to the complex flow structure. Current study presents the development process of acoustic holography in the vehicle underbody, and discusses the results obtained using the method. Difficulties associated with using acoustic holography as well as the implication of the results regarding future noise reduction possibilities are discussed.

  • PDF