• 제목/요약/키워드: Vehicle simulation

검색결과 3,382건 처리시간 0.04초

OPTIMIZATION ON VEHICLE FUEL CONSUMPTION IN A HIGWAY BUS USING VEHICLE SIMULATION

  • Lyu, M.S.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.841-846
    • /
    • 2006
  • This paper presents a numerical approach to optimizing vehicle fuel economy in a higway bus. The method described is based on using a commercial software vehicle simulation to identify the relative efficiency of each of the vehicle systems, such as the engine hardware, engine software calibration, transmission, cooling system and ancillary drives. The simulation-based approach offers a detailed understanding of which vehicle systems are underperforming and by how much the vehicle fuel economy can be improved if those systems are brought up to best-in-class performance. In this way, the optimum vehicle fuel economy can be provided to the vehicle customer. A further benefit is that the simulation requires only a minimum number of vehicle testing for initial validation, with all subsequent field test cycles performed in software, thereby reducing development time and cost for the manufacturer.

고속도로에서의 자율주행 알고리즘 개발 및 평가를 위한 다차량 시뮬레이션 환경 개발 (Multi-Vehicle Environment Simulation Tool to Develop and Evaluate Automated Driving Systems in Motorway)

  • 이호준;정용환;민경찬;이명수;신재곤;이경수
    • 자동차안전학회지
    • /
    • 제8권4호
    • /
    • pp.31-37
    • /
    • 2016
  • Since real road experiments have many restrictions, a multi-vehicle traffic simulator can be an effective tool to develop and evaluate fully automated driving systems. This paper presents multi-vehicle environment simulation tool to develop and evaluate motorway automated driving systems. The proposed simulation tool consists of following two main parts: surrounding vehicle model and environment sensor model. The surrounding vehicle model is designed to quickly generate rational complex traffic situations of motorway. The environment sensor model depicts uncertainty of environment sensor. As a result, various traffic situations with uncertainty of environment sensor can be proposed by the multi-vehicle environment simulation tool. An application to automated driving system has been conducted. A lane changing algorithm is evaluated by performance indexes from the multi-vehicle environment simulation tool.

The impact of artificial discrete simulation of wind field on vehicle running performance

  • Wu, Mengxue;Li, Yongle;Chen, Ning
    • Wind and Structures
    • /
    • 제20권2호
    • /
    • pp.169-189
    • /
    • 2015
  • To investigate the effects of "sudden change" of wind fluctuations on vehicle running performance, which is caused by the artificial discrete simulation of wind field, a three-dimensional vehicle model is set up with multi-body dynamics theory and the vehicle dynamic responses in crosswind conditions are obtained in time domain. Based on Hilbert Huang Transform, the effects of simulation separations on time-frequency characteristics of wind field are discussed. In addition, the probability density distribution of "sudden change" of wind fluctuations is displayed, addressing the effects of simulation separation, mean wind speed and vehicle speed on the "sudden change" of wind fluctuations. The "sudden change" of vehicle dynamic responses, which is due to the discontinuity of wind fluctuations on moving vehicle, is also analyzed. With Principal Component Analysis, the comprehensive evaluation of vehicle running performance in crosswind conditions at different simulation separations of wind field is investigated. The results demonstrate that the artificial discrete simulation of wind field often causes "sudden change" in the wind fluctuations and the corresponding vehicle dynamic responses are noticeably affected. It provides a theoretical foundation for the choice of a suitable simulation separation of wind field in engineering application.

타이어와 차량 쏠림 II-이론적 배경, Simulation, 실차검증 (Tire and Vehicle Pull II- Basic Theory, Simulation, and Verification)

  • 이정환;문승환
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.157-164
    • /
    • 2000
  • It is known that residual aligning torque of tires causes vehicle pull. There is, however, only a little literature available which shows how the residual aligning torque of tires causes vehicle pull. In this paper, a vehicle model in two degrees of freedom was adopted for the analysis of a vehicle under the straight-ahead motion. The analysis with this vehicle model clearly shows the effect of residual aligning torque of tires on vehicle pull. In order to show the validity of the analysis, a vehicle commercially available was selected. This vehicle was modeled in 137 degrees of freedom system with multibody dynamics software. Vehicle pull simulation results show that vehicle model drifts in lateral direction due to the residual aligning torque of tires. Vehicle test results with the car were also included.

  • PDF

REAL-TIME SIMULATION OF A HIGH SPEED MULTIBODY TRACKED VEHICLE

  • YI K. S.;YI S.-J.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.351-357
    • /
    • 2005
  • Development of a real-time simulation model for high-speed and multibody tracked vehicles is difficult because they involve hundreds of highly nonlinear equations. In the development of a reliable tracked vehicle model for real-time simulation, it is helpful to use an off-line tracked vehicle model developed by considering all the degrees of freedom of each element. This paper presents a step-by-step procedure for the development of a real-time simulation model based on the off-line tracked vehicle model. The road input data, Profile IV, is used for the real time simulation and simulation results are compared with vehicle test results obtained in the military test field. It is noted that the simulation results are quite close to the test results.

엔진 부분 부하 성능 및 변속기 시프트맵을 이용한 차량주행성능 컴퓨터 시뮬레이션 (A Computer Simulation of a Driving Vehicle Performance using an Set of Engine Part Load Performance and a Transmission Shift Map)

  • 이충훈
    • 한국분무공학회지
    • /
    • 제19권2호
    • /
    • pp.64-68
    • /
    • 2014
  • A driving vehicle performance which is driven by FTP-75 mode was simulated by computer. Throttle valve position, engine speed, air mass flow rate, fuel consumption et al. were computer simulated. A set of engine part load performance data, automatic transmission shift map and vehicle specifications were used for the computer simulation. Throttle valve position, engine speed, air mass flow rate et al. measured for evaluating the computer simulation results by driving the vehicle with FTP-75 mode on a chassis dynamometer. GT-Power$^{(R)}$ software was used for the computer simulation of the driving vehicle performance. Experimental fuel consumption rate was measured by using an ECU HILS fuel injection system. The experimental data and simulation results were compared. The computer simulation of the driving vehicle performance predicts the measured data well comparatively.

A Study of Vehicle Fuel Consumption Simulation using VHDL-AMS Multi-domain Simulation

  • Abe, Takashi;Takakura, Shikoh;Higuchi, Tsuyoshi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권2호
    • /
    • pp.232-238
    • /
    • 2013
  • The vehicle system is a multi-domain system that requires many branches of science and engineering. Therefore the development of the vehicle system requires the use of design methodologies that utilize simulations, which have grown increasingly sophisticated in recent years. Our research group proposed a simulation modeling method based on the VHDL-AMS language. This paper describes how VHDL-AMS is used to model of vehicle fuel consumption simulation. The fuel consumption is shown using proposed simulation model on the Japanese 10-15 mode. We examine the influence of the vehicle system with electrical load and hill climb resistance in the vehicle running resistance.

SUV - EPS 차량의 동시 시뮬레이션 기술 개발 및 시뮬레이션 통합 기술 개발 (Co-Simulation and Simulation Integration Technology Development for SUV Vehicle Equipped with Electric Power Steering (EPS))

  • B. C. Jang;Y. K. Eom
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.472-475
    • /
    • 2003
  • Electric Power Steering (EPS) mechanism has become widely equipped in passenger vehicle due to the environmental consciousness and higher fuel efficiency. This paper describes the development of co-simulation technique and simulation integration technique of EPS control system with dynamic vehicle model. A full vehicle model interacted with EPS control algorithm is concurrently simulated on a single bump road condition. Dynamic responses of vehicle chassis and steering system resulting from road surface impact are evaluated and compared with proving ground experimental data. The comparisons will show reasonable agreement on tie-rod load. rack displacement, handle-wheel torque and tire center acceleration. This developed simulation capability can be used for EPS performance evaluation and calibration as well as for vehicle handling performance integration and synthesis.

  • PDF

ACC 차량의 동특성 해석을 위한 VR 시뮬레이션 시스템 개발 (Development of the VR Simulation System for the Dynamic Characteristics of the Adaptive Cruise Controlled Vehicle)

  • 권성진;장석;윤경한;서명원
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.163-172
    • /
    • 2004
  • Nowadays, to analyze the dynamic characteristics of the automotive driving system, the computer simulation linked up with VR(Virtual Reality) technology is treated as the useful method with the improvement of computing ability. In this paper, the VR simulation system has been developed to investigate the driving characteristics of the ASV(Advanced Safety Vehicle) equipped with an ACC(Adaptive Cruise Control) system. For the purpose, VR environment which generates 3D graphic and sound information of the vehicle, the road, the facilities, and the terrain has been organized for the driving reality. Mathematical models of vehicle dynamic analysis including the ACC model have been constructed for computer simulation. The ACC modulates the throttle and brake functions to regulate the vehicle speed so that vehicles could keep proper spacing. Also, the real-time simulation algorithm synchronizes vehicle dynamic simulation with the graphic rendering. With the developed VR simulation system, simple scenarios are applied to analyze the dynamic characteristics. It is shown that the VR simulation system could be useful to evaluate the adaptive cruise controlled vehicle on various driving conditions.

A Symbolic Computation Method for Automatic Generation of a Full Vehicle Model Simulation Code for a Driving Simulator

  • Lee Ji-Young;Lee Woon-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.395-402
    • /
    • 2005
  • This paper deals with modeling and computer simulation of a full multibody vehicle model for a driving simulator. The multibody vehicle model is based on the recursive formulation and a corresponding simulation code is generated automatically from AUTOCODE, which is a symbolic computation package developed by the authors using MAPLE. The paper describes a procedure for automatically generating a highly efficient simulation code for the full vehicle model, while incorporating realistically modeled components. The following issues have been accounted for in the procedure, including software design for representing a mechanical system in symbolic form as a set of computer data objects, a multibody formulation for systems with various types of connections between bodies, automatic manipulation of symbolic expressions in the multibody formulation, interface design for allowing users to describe unconventional force-and torque-producing components, and a method for accommodating external computer subroutines that may have already been developed. The effectiveness and efficiency of the proposed method have been demonstrated by the simulation code developed and implemented for driving simulation.