• Title/Summary/Keyword: Vehicle services

Search Result 524, Processing Time 0.025 seconds

ADPSS Channel Interpolation and Prediction Scheme in V2I Communication System (V2I 통신 시스템에서 ADPSS 채널 보간과 예측 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.34-41
    • /
    • 2017
  • Vehicle to Infrastructure(V2I) communication means the technology between the vehicle and the roadside unit to provide the Intelligent Transportation Systems(ITS) and Telematic services. The vehicle collects information about the probe data through the evolved Node B(eNodeB) and after that eNodeB provides road conditions or traffic information to the vehicle. To provide these V2I communication services, we need a link adaptation technology that enables reliable and higher transmission rate. The receiver transmits the estimated Channel State Information(CSI) to transmitter, which uses this information to enable the link adaptation. However, due to the rapid channel variation caused by vehicle speed and the processing delay between the layers, the estimated CSI quickly becomes outdated. For this reason, channel interpolation and prediction scheme are needed to achieve link adaptation in V2I communication system. We propose the Advanced Discrete Prolate Spheroidal Sequence(ADPSS) channel interpolation and prediction scheme. The proposed scheme creates an orthonomal basis, and uses a correlation matrix to interpolate and predict channel. Also, smoothing is applied to frequency domain for noise removal. Simulation results show that the proposed scheme outperforms conventional schemes with the high speed and low speed vehicle in the freeway and urban environment.

A Study on the Development of Urban Roads Convoy Driving Service and Effect Analysis (도시부 도로 호송주행(Convoy Driving) 서비스 개발 및 효과분석)

  • Son, Seung-neo;Lee, Ji-yeon;Cho, Yong-sung;Park, Ji-hyeok;So, Jae-hyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.51-63
    • /
    • 2022
  • Convoy driving is one of the technologies of multi-vehicle cooperation driving along with platoon driving. All over the world, research on vehicle control mechanisms to maintain vehicle formation during convoy driving convoy driving has been actively conducted and in Europe's Autonet 2030 project has developed and demonstrated convoy driving services for highways. But, even the concept of convoy driving is still insufficient in Korea. Therefore, in this study, the concept of convoy driving service was established and scenarios and communication messages for service application on urban roads were developed. And its effectiveness was verified through simulation analysis. As a result of comparing and analyzing individual vehicle cooperative driving and convoy driving for the blind spot support service and dilemma zone safety support service, which are representative V2I cooperative driving services on urban roads, the number of conflicts(indicator of traffic safety) and delays and stops(indicator of traffic efficiency) are significantly improved in convoy driving compared to individual vehicle cooperative driving.

Characteristics of Interior Noise of KTX High Speed Vehicle in Tunnel Structure (터널 구조에 따른 KTX 고속차량 차내 소음 특성)

  • Lee C.W.;Kim J.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.341-344
    • /
    • 2005
  • High-speed trains with maximum speed of 300km/h, named KTX, have started revenue services since April 2004. Because of the geographical features of Korea a large portion of the 'Kyung-Bu' line is comprised of tunnels, which may cause excessive noise in a vehicle. The KTX interior noise follows in tunnel structure and the place where the quality appears different, the quality against hereupon from the commerce vehicle from the research which it sees it executes and comparison to analyze.

  • PDF

BL-CAST:Beacon-Less Broadcast Protocol for Vehicular Ad Hoc Networks

  • Khan, Ajmal;Cho, You-Ze
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1223-1236
    • /
    • 2014
  • With the extension of wireless technology, vehicular ad hoc networks provide important services for the dissemination of general data and emergency warnings. However, since, the vehicle topology frequently changes from a dense to a sparse network depending on the speed of the moving vehicles and the time of day, vehicular ad hoc networks require a protocol that can facilitate the efficient and reliable dissemination of emergency messages in a highly mobile environment under dense or intermittent vehicular connectivity. Therefore, this paper proposes a new vehicular broadcast protocol, called BL-CAST, that can operate effectively in both dense and sparse network scenarios. As a low overhead multi-hop broadcast protocol, BL-CAST does not rely on the periodic exchange of beacons for updating location information. Instead, the location information of a vehicle is included in a broadcast message to identify the last rebroadcasting vehicle in an intermittently connected network. Simulation results show that BL-CAST outperforms the DV-CAST protocol in terms of the end-to-end delay, message delivery ratio and network overhead.

Analysis of Intelligent Vehicle Control Methods for CIM at Non-signalized Intersections (비 신호 교차로에서 CIM을 위한 지능형 차량 제어기법 분석)

  • Joo, Hyunjin;Lim, Yujin
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2018
  • There are lots of literature about connected car system from industry and academia. The connected car is a smart car integrated with IT technology that is connected to people, vehicles and traffic management systems. It is important to V2I (vehicle to infrastructure) communication which is the connection between the vehicle and the infrastructure. CIM (cooperative intersection management) is a device to manage the communication between vehicle and infrastructure. In this paper, we analyze two intelligent vehicle control methods using CIM at non-signalized intersections. In the first method, a vehicle to pass through intersection needs to reserve a resource of intersection. In the second method, trajectory patterns on pre-planned vehicles are classified to pass through intersection. We analyze case studies of two methods to be implemented by DP(dynamic programming) and ACO(ant colony optimization) algorithms. The methods can be reasonably improved by placing importance on vehicles or controlling speeds of vehicles.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

A Study on Life Safety Services Support for Single Elderly in Rural Areas (농촌독거노인의 생활안전서비스지원에 관한 연구)

  • Lee, Mi Young;Cho, Hee Keum;Choi, Yoon Ji
    • Journal of Family Resource Management and Policy Review
    • /
    • v.20 no.1
    • /
    • pp.43-60
    • /
    • 2016
  • The purpose of this study was to investigate what life safety services the elderly living alone in rural areas need and to propose the life safety services that they actually need. The research subjects were 1,000 people aged 65 years and over living in the rural areas of Korea. Among the total 1,000 respondents, 283 elderly people who did not live together with their married children were included in this study. Data were analyzed through frequency analysis, descriptive statistics, and multiple regression analysis. The results of this study were as follows. First, the needs of health care services and vehicle support services (when the elderly went to the hospital or walked out) were high. These were services related to health, which means that the health of the elderly is not good and that they are interested in health. Of course, it is important to treat the disease. However, it is more important to prevent disease and maintain health. An expansion of these services is urgently needed. Second, the need for life safety services was affected by the frequency of contact with neighbors, uncomfortable housing, exercise, the frequency of contact with children, gas accidents, and nutrition variables. Through this analysis, we propose to include the housing improvement service, nutrition improvement services, and expanding social relations services in the life safety services.

AVLS Using the Dedicated Wireless Communication between Vehicle and Road-Side Equipment (차량과 노변기지국간 전용 무선 데이터 통신을 이용한 차량위치 추적 시스템)

  • Hong, Sung-Bum;Lee, Jung-Gu;Na, Won;Choi, Un-Seok;Baek, Joong-Hwan;Hwang, Byung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.171-181
    • /
    • 2000
  • In this paper, we propose an AVLS(Automatic Vehicle Location System) using the DSRC(Dedicated Short Range Communication) which adopts a radio communication tool between RSE(Road-Side Equipment) and OBE(On-Board Equipment) on a vehicle and uses the ISM bandwidth of 5.8GHz radio frequency. Typical AVLS uses the sensors for detecting the vehicle, but the DSRC system is developed for supporting various services such as the position of vehicle, clearance, vehicle to vehicle communication, collection and distributions of traffic and road information. Also, for fast processing, we design three-layer configuration of physical(L1), data link(L2), and application layer(L7), which simplifies the seven-layer configuration. We suggest the proposed system as a new technology for replacement of typical wireless communication system and sensors for AVLS.

  • PDF

The Technology of Connected Car (커넥티드 카의 기술)

  • Shim, Hyun-Bo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.590-598
    • /
    • 2016
  • It comes into the spotlight as the new Blue Ocean in which the connected car industry in which the car and mobile communication technology is convergence. All sorts of infortainments services connecting with the portable electronic device(Smart phone, tablet PC, and MP3 player) and car are rapidly grown. The Connected car emphasizes the vehicle connectivity with the concept that the car has communication with the around on a real time basis and it provides the safety and expedience to the operator and using the thing of Internet (IoT) in the car and supports the application, presently, the entertainment service including the real-time Navigation, parking assistant function, not only the remote vehicle control and management service but also Email, multimedia streaming service, SNS and with the platform. Intelligent vehicle network is studied as the kind according to MANET(Mobile Ad Hoc Network) for the safety operation of the cars of the road and improving the efficiency of the driving.

Potential Safety Benefit Analysis of Cooperative Driver Assistance Systems Via Vehicle-to-vehicle Communications (협력형 차량 안전 시스템의 잠재적 안전 효과 분석 연구)

  • Kang, Ji woong;Song, Bongsob
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.128-141
    • /
    • 2018
  • In this paper, a methodology to analyze the potential safe benefit of six cooperative driver assistance systems via V2V (vehicle-to-vehicle) communications is proposed. Although it is quite necessary to assess social impact with respect to new safety technologies for cooperative vehicles with V2V communications, there are few studies in Korea to predict the quantitative safety benefit analysis. In this study, traffic accident scenarios are classified based on traffic fatality between passenger cars. The sequential collision type is classified for a multiple pile-up with respect to collision direction such as forward, side, head-on collisions. Then movement of surrounding vehicle is considered for the scenario classification. Next, the cooperative driver assistance systems such as forward collision warning, blind spot detection, and intersection movement assistance are related with the corresponding accident scenarios. Finally, it is summarized how much traffic fatality may be reduced potentially due to the V2V communication based safety services.