• Title/Summary/Keyword: Vehicle routing problem

Search Result 204, Processing Time 0.123 seconds

Vehicle Routing Problem Using Parallel Genetic Algorithm (병렬 유전자 알고리즘을 이용한 차량경로문제에 관한 연구)

  • Yoo, Yoong-Seok;Ro, In-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.490-499
    • /
    • 1999
  • Vehicle routing problem(VRP) is known to be NP-hard problem, and good heuristic algorithm needs to be developed. To develop a heuristic algorithm for the VRP, this study suggests a parallel genetic algorithm(PGA), which determines each vehicle route in order to minimize the transportation costs. The PGA developed in this study uses two dimensional array chromosomes, which rows represent each vehicle route. The PGA uses new genetic operators. New mutation operator is composed of internal and external operators. internal mutation swaps customer locations within a vehicle routing, and external mutation swaps customer locations between vehicles. Ten problems were solved using this algorithm and showed good results in a relatively short time.

  • PDF

Optimization for Vehicle Routing Problem with Locations of Parcel Lockers (물품보관소 위치를 고려한 차량경로문제 최적화)

  • Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.134-141
    • /
    • 2022
  • Transportation in urban area has been getting hard to fulfill the demand on time. There are various uncertainties and obstacles related with road conditions, traffic congestions, and accidents to interrupt the on-time deliveries. With this situation, the last mile logistics has been a keen issue for researchers and practitioners to find the best strategy of the problem. A way to resolve the problem is to use parcel lockers. Parcel locker is a storage that customers can pick up their products. Transportation vehicles deliver the products to parcel lockers instead of all customer sites. Using the parcel lockers, the total delivery costs can be reduced. However, the inconvenience of customer has to increase. Thus, we have to optimal solution to balance between the total delivery costs and customers' inconvenience. This paper formulates a mathematical model to find the optimal solution for the vehicle routing problem and the location problem of parcel lockers. Experimental results provide the viability to find optimal strategy for the routing problem as well as the location problem.

An approach for inventory routing problem using TOC in supply chain (공급사슬 환경에서 제약이론을 적용한 재고 보충 및 차량경로문제 결정)

  • Kim Gang-Tae;Lee Yeong-Hae
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.179-186
    • /
    • 2006
  • There was a lot of research to integration of the transshipment and inventory problem in supply chain. Such a integration of inventory and transshipment problem called IRP (Inventory Routing Problem). We consider a distribution problem in which a set of products has to be shipped from a supplier to several retailers in a given planning horizon. Transshipment from the supplier to the retailer is performed by vehicles of limited capacity. Each retailer determines replenishment leadtime and order quantity with buffer management. A supplier determines optimal vehicle routing in supply chain. We suggest a heuristic algorithm which be used TOC buffer management in a replenishment problem and a tabu search algorithm in VRP (Vehicle Routing Problem).

  • PDF

An Enhanced Greedy Message Forwarding Protocol for Increasing Reliability of Mobile Inter-Vehicle Communication (이동하는 차량 간 통신의 신뢰성 향상을 위한 개선된 탐욕 메시지 포워딩 프로토콜)

  • Ryu, Min-Woo;Cha, Si-Ho;Cho, Kuk-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.43-50
    • /
    • 2010
  • Vehicle-to-Vehicle (V2V) is a special type of vehicle ad-hoc network (VANET), and known as a solution to provide communication among vehicles and reduce vehicle accidents. Geographical routing protocols as Greedy Perimeter Sateless Routing (GPSR) are very suitable for the V2V communication due to special characters of highway and device for vehicles. However, the GPSR has problem that appears local maximum by some stale neighbor nodes in the greedy mode of the GPSR. It can lose transmission data in recovery mode, even if the problem is can be solved by the recovery mode of the GPSR. We therefore propose a Greedy Perimeter Reliable Routing (GPRR), can provide more reliable data transmission, to resolve the GPSR problem in the V2V environment. Simulation results using ns-2 shown that the GPRR reveals much better performance than the GPSR by remarkably reducing the local maximum rate in the greedy mode.

Heuristic for Vehicle Routing Problem with Perishable Product Delivery (식품 배송의 특성을 고려한 차량경로문제의 발견적 해법)

  • Kang, Kyung Hwan;Lee, Young Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.265-272
    • /
    • 2007
  • The purpose of Vehicle Routing Problem (VRP) is to design the least costly (distance, time) routes for a fleet of identically capacitated vehicles to serve geographically scattered customers. There may be some restrictions such as the maximal capacity for each vehicle, maximal distance for each vehicle, time window to visit the specific customers, and so forth. This paper is concerned with VRP to minimize the sum of elapsed time from departure, where the elapsed time is defined as the time taken in a moving vehicle from the depot to each customer. It is important to control the time taken from departure in the delivery of perishable products or foods, whose freshness may deteriorate during the delivery time. An integer linear programming formulation is suggested and a heuristic for practical use is constructed. The heuristic is based on the set partitioning problem whose performances are compared with those of ILOG dispatcher. It is shown that the suggested heuristic gave good solutions within a short computation time by computational experiments.

A Hybrid Genetic Algorithm for the Location-Routing Problem with Simultaneous Pickup and Delivery

  • Karaoglan, Ismail;Altiparmak, Fulya
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.1
    • /
    • pp.24-33
    • /
    • 2011
  • In this paper, we consider the Location-Routing Problem with simultaneous pickup and delivery (LRPSPD) which is a general case of the location-routing problem. The LRPSPD is defined as finding locations of the depots and designing vehicle routes in such a way that pickup and delivery demands of each customer must be performed with same vehicle and the overall cost is minimized. Since the LRPSPD is an NP-hard problem, we propose a hybrid heuristic approach based on genetic algorithms (GA) and simulated annealing (SA) to solve the problem. To evaluate the performance of the proposed approach, we conduct an experimental study and compare its results with those obtained by a branch-and-cut algorithm on a set of instances derived from the literature. Computational results indicate that the proposed hybrid algorithm is able to find optimal or very good quality solutions in a reasonable computation time.

A Vehicle Routing Problem Which Considers Traffic Situation by Service Time Zones (서비스 시간대별 교통상황을 고려한 차량경로문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.22 no.4
    • /
    • pp.359-367
    • /
    • 2009
  • The vehicle travel time between the demand points in downtown area is greatly influenced by complex road condition and traffic situation that change real time to various external environments. Most of research in the vehicle routing problems compose vehicle routes only considering travel distance and average vehicle speed between the demand points, however did not consider dynamic external environments such as traffic situation by service time zones. A realistic vehicle routing problem which considers traffic situation of smooth, delaying, and stagnating by three service time zones such as going to work, afternoon, and going home was suggested in this study. A mathematical programming model was suggested and it gives an optimal solution when using ILOG CPLEX. A hybrid genetic algorithm was also suggested to chooses a vehicle route considering traffic situation to minimize the total travel time. By comparing the result considering the traffic situation, the suggested algorithm gives better solution than existing algorithms.

The Sludge Collection Scheduling and Vehicle Routing Strategies (하수처리시설의 슬러지 수거 일정계획 수립 및 수거차량 경로결정)

  • Kim Min-Je;No Ui-Su;Heo Eun-Jeong;Choi Gyeong-Hyeon
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1170-1177
    • /
    • 2006
  • We apply VRP(Vehicle Routing Problem) to sludge collection system in this study. Sewage stores of villages are located in each village around a multipurpose dam. Sludge which is produced in sewage store of village is transported from the sewage store of village to the sewage treatment plants by the special purpose vehicle such as the tank lorry. In this paper, we propose sludge collection strategies which allocate each sewage store of village to sewage treatment plants and decide the schedule of sludge collection in order to collect sludge efficiently. The strategies aim to decrease transportation cost with deciding proposed vehicle routing and scheduling the sludge collection. When we decide route of vehicles, we consider the collection time in sewage store of village, distance between sewage store of villages and vehicle information as average velocity of vehicle, operation time of vehicle driver. We also develop the SCMS(Sludge Collection Management System) based on windows system with real data which is used in certain circumstance. And we experiment to figure out vehicle route and transportation cost throughout changing input data.

  • PDF

Nearest L- Neighbor Method with De-crossing in Vehicle Routing Problem

  • Kim, Hwan-Seong;Tran-Ngoc, Hoang-Son
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.143-151
    • /
    • 2009
  • The field of vehicle routing is currently growing rapidly because of many actual applications in truckload and less than truckload trucking, courier services, door to door services, and many other problems that generally hinder the optimization of transportation costs in a logistics network. The rapidly increasing number of customers in such a network has caused problems such as difficulty in cost optimization in terms of getting a global optimum solution in an acceptable time. Fast algorithms are needed to find sufficient solutions in a limited time that can be used for real time scheduling. In this paper, the nearest L-method (NLNM) is proposed to obtain a vehicle routing solution. String neighbors of different lengths were chosen, tested and compared. The applied de crossing procedure is meant to solve the routes by NLNM by giving a better solution and shorter computation time than that of NLNM with long string neighbors.

A Vehicle Routing Problem with Double-Trip and Multiple Depots by using Modified Genetic Algorithm (수정 유전자 알고리듬을 이용한 중복방문, 다중차고 차량경로문제)

  • Jeon, Geon-Wook;Shim, Jae-Young
    • IE interfaces
    • /
    • v.17 no.spc
    • /
    • pp.28-36
    • /
    • 2004
  • The main purpose of this study is to find out the optimal solution of the vehicle routing problem considering heterogeneous vehicle(s), double-trips, and multi depots. This study suggests a mathematical programming model with new numerical formula which considers the amount of delivery and sub-tour elimination and gives optimal solution by using OPL-STUDIO(ILOG). This study also suggests modified genetic algorithm which considers the improvement of the creation method for initial solution, application of demanding point, individual and last learning method in order to find excellent solution, survival probability of infeasible solution for allowance, and floating mutation rate for escaping from local solution. The suggested modified genetic algorithm is compared with optimal solution of the existing problems. We found the better solution rather than the existing genetic algorithm. The suggested modified genetic algorithm is tested by Eilon and Fisher data(Eilon 22, Eilon 23, Eilon 30, Eilon 33, and Fisher 10), respectively.