• Title/Summary/Keyword: Vehicle number recognition

Search Result 107, Processing Time 0.031 seconds

Analysis of Deep Learning Model for the Development of an Optimized Vehicle Occupancy Detection System (최적화된 차량 탑승인원 감지시스템 개발을 위한 딥러닝 모델 분석)

  • Lee, JiWon;Lee, DongJin;Jang, SungJin;Choi, DongGyu;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.146-151
    • /
    • 2021
  • Currently, the demand for vehicles from one family is increasing in many countries at home and abroad, reducing the number of people on the vehicle and increasing the number of vehicles on the road. The multi-passenger lane system, which is available to solve the problem of traffic congestion, is being implemented. The system allows police to monitor fast-moving vehicles with their own eyes to crack down on illegal vehicles, which is less accurate and accompanied by the risk of accidents. To address these problems, applying deep learning object recognition techniques using images from road sites will solve the aforementioned problems. Therefore, in this paper, we compare and analyze the performance of existing deep learning models, select a deep learning model that can identify real-time vehicle occupants through video, and propose a vehicle occupancy detection algorithm that complements the object-ident model's problems.

A GUI-based the Recognition System for Measured Values of Digital Instrument in the Industrial Site (GUI기반 산업용 디지털 기기의 측정값 인식 시스템)

  • Jeon, Min-sik;Ko, Bong-jin
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.496-502
    • /
    • 2016
  • In this paper, we proposed and implemented a GUI-based system to recognize and record measured values of digital instruments in the industrial site through image processing. Unlike the existing vehicle license plate recognition system, the measured values of the measuring instrument are displayed on the LCD screen as digital numbers. So, the proposed system considers the decimal point, a negative sign, light reflected by LCD protective glass, and various disturbance factors. We used blob-labeling technique to recognize the numbers displayed on the LCD screen, the recognized number images were determined as certain numbers through the template matching, and recognized values were recorded in the storage device with measurement time. Therefore, the proposed system in this paper would reduce the burden of writing when recording the measured values of the inside/outside diameter or height of the product in the industrial site, so effective and errorless process management in production process is possible by preventing errors in recording measurements when written by hand.

Novel License Plate Detection Method Based on Heuristic Energy

  • Sarker, Md.Mostafa Kamal;Yoon, Sook;Lee, Jaehwan;Park, Dong Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1114-1125
    • /
    • 2013
  • License Plate Detection (LPD) is a key component in automatic license plate recognition system. Despite the success of License Plate Recognition (LPR) methods in the past decades, the problem is quite a challenge due to the diversity of plate formats and multiform outdoor illumination conditions during image acquisition. This paper aims at automatical detection of car license plates via image processing techniques. In this paper, we proposed a real-time and robust method for license plate detection using Heuristic Energy Map(HEM). In the vehicle image, the region of license plate contains many components or edges. We obtain the edge energy values of an image by using the box filter and search for the license plate region with high energy values. Using this energy value information or Heuristic Energy Map(HEM), we can easily detect the license plate region from vehicle image with a very high possibilities. The proposed method consists two main steps: Region of Interest (ROI) Detection and License Plate Detection. This method has better performance in speed and accuracy than the most of existing methods used for license plate detection. The proposed method can detect a license plate within 130 milliseconds and its detection rate is 99.2% on a 3.10-GHz Intel Core i3-2100(with 4.00 GB of RAM) personal computer.

Customized Pattern-Recognition Technique using Vision Measurement System Development in New Car Manufacturing Process (패턴인식 기법을 적용한 신차 제조공정 맞춤식 비젼 계측시스템 개발)

  • Lee, Gyung-Il;Kim, Jae-yeol;Roh, Chi-sung;Choi, Choul Jun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.51-59
    • /
    • 2016
  • Measurements of the automobile manufacturers are available anywhere and anytime, directly based on the criterion of failure is measured. The maintenance of high-precision production activities is direct evidence of the fact that competitive manufacturing activities are very important in determining the success of companies to recall defective starting from raw material costs. The current manufacturing sites produce calipers and clearance gauge the degree of tool only specific. Therefore, judging the quality, including the number of errors, requires a lot of attention to the dimension failures in day-to-day measurements and measurement tasks and duties repeated in difficult situations. In this paper, we aim to develop a vehicle manufacturing plant site using each of the manufacturing processes while operating a measurement tool. We display it using the Image Processing PC-based S/W with all those visual facts by management and recorded as image information a more accurate and current situation to obtain information and share visual measurements. We carry out research on the design and development vision inspection algorithm applied for pattern-recognition techniques that can help manufacturing site quality control.

Digit Recognition for Vehicle License Plate Based on Opened Enclosure (열림방향을 이용한 자동차번호판 숫자인식)

  • Zheng, Liu;Kim, Dong-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.453-459
    • /
    • 2015
  • In this paper, we propose a new digit recognition method based on opened enclosure. In the proposed method, each digit is divided into two parts, an upper part and a lower part, which are based on a cutting line that is modified depending on the number of intersection points. In the simulation, the performance evaluation through the data acquisition and application of the proposed algorithm was carried out and the result was presented.

Development of a parking control system that improves the accuracy and reliability of vehicle entry and exit based on LIDAR sensing detection

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.8
    • /
    • pp.9-21
    • /
    • 2022
  • In this paper, we developed a 100% detection system for entering and leaving vehicles by improving the detection rate of existing detection cameras based on the LiDAR sensor, which is one of the core technologies of the 4th industrial revolution. Since the currently operating parking lot depends only on the recognition rate of the license plate number of about 98%, there are various problems such as inconsistency in the entry/exit count, inability to make a reservation in advance due to inaccurate information provision, and inconsistency in real-time parking information. Parking status information should be managed with 100% accuracy, and for this, we built a parking lot entrance/exit detection system using LIDAR. When a parking system is developed by applying the LIDAR sensor, which is mainly used to detect vehicles and objects in autonomous vehicles, it is possible to improve the accuracy of vehicle entry/exit information and the reliability of the entry/exit count with the detected sensing information. The resolution of LIDAR was guaranteed to be 100%, and it was possible to implement so that the sum of entering (+) and exiting (-) vehicles in the parking lot was 0. As a result of testing with 3,000 actual parking lot entrances and exits, the accuracy of entering and exiting parking vehicles was 100%.

A Study on the Development and Standard Specification of Unmanned Traffic Enforcement Equipment for Two-Wheeled Vehicles (이륜차 무인교통단속장비 개발 및 표준규격 연구)

  • Byung chul In;Seong jun Yoo;Eum Han;Kyeongjin Lee;Sungho Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.126-142
    • /
    • 2023
  • The purpose of this study is to develop unmanned traffic enforcement equipment and standard specifications for the prevention of traffic accidents and violations of the two-wheeled vehicle laws. To this end, we conducted a review of the problems and new technologies of the currently operating unmanned traffic enforcement equipment on two-wheeled vehicles. And through a survey, the feasibility of introducing unmanned traffic enforcement equipment for two-wheeled vehicles and the current status of technology were investigated. In addition, the two-wheeled vehicle enforcement function was implemented through field tests of the development equipment, and the addition of enforcement targets and the number recognition rate were improved through performance improvement. Based on the results of field experiments and performance evaluation, performance standards for unmanned two-wheeled vehicle traffic enforcement equipment were prepared, and in the communication protocol, two-wheeled vehicle-related matters were newly composed in the vehicle classification code and violation items to develop standards.

Real-Time Vehicle License Plate Recognition System Using Adaptive Heuristic Segmentation Algorithm (적응 휴리스틱 분할 알고리즘을 이용한 실시간 차량 번호판 인식 시스템)

  • Jin, Moon Yong;Park, Jong Bin;Lee, Dong Suk;Park, Dong Sun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.361-368
    • /
    • 2014
  • The LPR(License plate recognition) system has been developed to efficient control for complex traffic environment and currently be used in many places. However, because of light, noise, background changes, environmental changes, damaged plate, it only works limited environment, so it is difficult to use in real-time. This paper presents a heuristic segmentation algorithm for robust to noise and illumination changes and introduce a real-time license plate recognition system using it. In first step, We detect the plate utilized Haar-like feature and Adaboost. This method is possible to rapid detection used integral image and cascade structure. Second step, we determine the type of license plate with adaptive histogram equalization, bilateral filtering for denoise and segment accurate character based on adaptive threshold, pixel projection and associated with the prior knowledge. The last step is character recognition that used histogram of oriented gradients (HOG) and multi-layer perceptron(MLP) for number recognition and support vector machine(SVM) for number and Korean character classifier respectively. The experimental results show license plate detection rate of 94.29%, license plate false alarm rate of 2.94%. In character segmentation method, character hit rate is 97.23% and character false alarm rate is 1.37%. And in character recognition, the average character recognition rate is 98.38%. Total average running time in our proposed method is 140ms. It is possible to be real-time system with efficiency and robustness.

Real-time Color Recognition Based on Graphic Hardware Acceleration (그래픽 하드웨어 가속을 이용한 실시간 색상 인식)

  • Kim, Ku-Jin;Yoon, Ji-Young;Choi, Yoo-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • In this paper, we present a real-time algorithm for recognizing the vehicle color from the indoor and outdoor vehicle images based on GPU (Graphics Processing Unit) acceleration. In the preprocessing step, we construct feature victors from the sample vehicle images with different colors. Then, we combine the feature vectors for each color and store them as a reference texture that would be used in the GPU. Given an input vehicle image, the CPU constructs its feature Hector, and then the GPU compares it with the sample feature vectors in the reference texture. The similarities between the input feature vector and the sample feature vectors for each color are measured, and then the result is transferred to the CPU to recognize the vehicle color. The output colors are categorized into seven colors that include three achromatic colors: black, silver, and white and four chromatic colors: red, yellow, blue, and green. We construct feature vectors by using the histograms which consist of hue-saturation pairs and hue-intensity pairs. The weight factor is given to the saturation values. Our algorithm shows 94.67% of successful color recognition rate, by using a large number of sample images captured in various environments, by generating feature vectors that distinguish different colors, and by utilizing an appropriate likelihood function. We also accelerate the speed of color recognition by utilizing the parallel computation functionality in the GPU. In the experiments, we constructed a reference texture from 7,168 sample images, where 1,024 images were used for each color. The average time for generating a feature vector is 0.509ms for the $150{\times}113$ resolution image. After the feature vector is constructed, the execution time for GPU-based color recognition is 2.316ms in average, and this is 5.47 times faster than the case when the algorithm is executed in the CPU. Our experiments were limited to the vehicle images only, but our algorithm can be extended to the input images of the general objects.

Vehicle Load Analysis using Bridge-Weigh-in-Motion System in a Cable Stayed Bridge (BWIM 시스템을 사용한 사장교의 차량하중 분석)

  • Park, Min-Seok;Lee, Jung-Whee;Kim, Sung-Kon;Jo, Byung-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.1-8
    • /
    • 2006
  • This paper describes the procedures developing the algorithm for analyzing signals acquired from the Bridge Weigh-in-Motion (BWIM) system installed in Seohae Bridge as a part of the bridge monitoring system. Through the analysis procedure, information about heavy traffics such as weight, speed, and number of axles are attempted to be extracted from time domain strain data of the BWIM system. One of numerous pattern recognition techniques, artificial neural network (ANN) is employed since it can effectively include dynamic effects, bridge-vehicle interaction, etc. A number of vehicle running experiments with sufficient load cases are executed to acquire training and/or test set of ANN. Extracted traffic information can be utilized for developing quantitative database of loading effect. Also, it can contribute to estimate fatigue lift or current health condition, and design truck can be revised based on the database reflecting recent trend of traffic.