• Title/Summary/Keyword: Vehicle loads

Search Result 483, Processing Time 0.031 seconds

An experimental study on the cooling performance of carbon dioxide heat pump system for fuel cell vehicles (연료전지 자동차용 이산화탄소 열펌프 시스템에서의 냉방 성능에 관한 실험적 연구)

  • Kim Sungchul;Park Minsoo;Kim Min Soo;Hwang Inchul;Noh Youngwoo;Park Moonsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.378-383
    • /
    • 2005
  • This experimental study presents the results of the cooling performance test of a $CO_2$ heat pump system for fuel cell vehicles. The experimental facility provides the cool ing and heating environment for cabin and heat releasing component. The test loop is designed to target the cooling capacity of 5kW and its coefficient of performance (COP) of 2.2. The cooling performance of the heat pump system is strongly dependent on the refrigerant charge and the degree of superheat. We carried out basic experiments to obtain optimum refrigerant charge and the degree of superheat level at the internal heat exchanger outlet. The heat pump system for fuel cell vehicles is different from that of engine-driven vehicles, where the former has an electricity-driven compressor and the latter has the belt-driven (engine-driven) compressor. In the fuel cell vehicle, the compressor speed is an independent operating parameter and it is controlled to meet the cooling/heating loads. Experiments were carried out at cooling mode with respect to the compressor speed and the incoming outdoor air speed. The results obtained in this study can provide the fundamental cool ing performance data using the $CO_2$ heat pump system for fuel cell vehicles.

  • PDF

Analytical Study on the Development of High-Performance Orthotropic Steel Deck considered the Fatigue Behaviors of Structural Details (구조 상세부의 피로거동을 고려한 고성능 강바닥판 개발에 관한 해석적 연구)

  • Kyung, Kab Soo;Shin, Dong Ho;Kim, Kyo Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2006
  • Various fatigue damages have been reported in orthotropic steel deck structures put upon girders. These damages are caused by complex behaviors of the deck, which is directly subjected to vehicle loads. To estimate the causes of fatigue cracks at the welded connected parts of the trough rib and the flor beam, and the trough rib and the deck plate, in orthotropic steel deck structures, FE analyses were first, performed in this study. Parameter studies were carried out to suggest effective structural details that consider fatigue, in which the main parameters are the thickness of the deck plate, the shape of the connection of the trough rib and the flor beam such as the slit form, and the welding length. This study suggests that the effective structural details improved the fatigue strength and discusses.

Early-Age Behavior Monitoring of Bus-Stop-Section Pavement Constructed Employing Precast Concrete Pavement Method (조립식포장 공법을 적용한 버스정거장 포장 초기 거동 추적조사)

  • Oh, Han-Jin;Kim, Seong-Min;Hwang, Ju-Hwan;Park, Won-Joo
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.229-237
    • /
    • 2011
  • This study was conducted to investigate the early-age performance of precast pavements constructed by replacing existing asphalt pavements for a bus stop section in urban bus only lanes. The behavior monitoring items included the differences in the levels between asphalt and precast pavements at the entrance and exit of the precast pavement, joint widths and level differences between precast slabs, slab settlement, and skid resistance at the slab surface. The applicability of diamond grinding techniques was also investigated. The results of this study showed that the slab level, joint width, settlement, and skid resistance were not much changed as time passed, which implied that the precast pavements stably sustained vehicle loads. It was also found that employing diamond grinding could much improve the leveling between precast slabs and the surface skid resistance.

Analysis of Nonpoint Sources Runoff Characteristic by Road Types (도로 유형별 비점오염원 유출특성 분석)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Chun-Sik;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1375-1384
    • /
    • 2010
  • Growth in population and urbanization has progressively increased the loading of pollutants from nonpoint sources as well as point sources. Especially in case of road regions such as city trunk road, national road and highway are rainfall and pollutants runoff intensive landuses since they are impervious and emit a lot of pollutants from vehicle activity. This research was conducted to investigate the nonpoint sources concentration and quantifying stormwater pollutants which are contained in rainfall runoff water. Three different monitoring sites in Jinju and Changwon city were equipped with an automatic rainfall gauge and flow meter for measuring rainfall and the volume of rainfall runoff. In the case of average EMC value, city trunk road was shown the highest value in target water quality items like as BOD, COD, SS, TN and TP. Or the amount of runoff loads by water quality items showed the highest value in city trunk road. And runoff load in city trunk road was 43.8 times high value compared to highway by value of city trunk road $356.7 mg/m^2$, highway $8.150 mg/m^2$, national road $19.99 mg/m^2$ in the case of BOD.

Deflection Analysis of Long Span Structures Using Under-Tension System (언더텐션 시스템을 이용한 장스팬 구조의 처짐 거동 해석)

  • Park, Duk-Kun;Lee, Jin;Ham, Su-Yun;Ahn, Nam-Shik;Lee, Ki-Hak;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.66-69
    • /
    • 2008
  • This study presents deflection analysis of long span structures for pedestrian bridge on crossroads. For long span structures, the size of structural members should be determined considering the esthetic view and vehicle below the structures. As a result, the slenderness ratio of members is increased and the structure may be suffered from significant deflection. The under-tensioned system on lower part of the structure, is applied in order to reduce the deflection and the size of members. In this regard, the under-tensioned system enables the load of upper parts to carη to the end of beam by means of tensional force in cable. In addition, effectiveness of under-tensioned system can be different depending on the size of cable, the number and spacing of posts. This study is performed with conforming the effect by analytical various parameters (size of cable, number and spacing of post). Dead and live loads is supposed to apply in the slab, and the analytical result by MIDAS program are presented addressing the effect of the under-tensioned system.

  • PDF

Behavior of Underground Flexible Pipes Subject to Vehicle Load (ll)-Based on Field Tests- (차량하중을 받는 지중연성관의 거동특성 (ll)-실증실험을 중심으로-)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.49-58
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance for electric cables. In this paper, stress and strain of flexible pipes with various installation depth are compared using traditional formula, FEM analysis, model soil box test and field test. from the findings of various analyses, considering the strain criteria-maximum 3.5%, it is suggested that flexible pipes can be buried at the depth of 80cm without additional soil improvement.

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

A Study on Condition Assessment of the General National Road Bridge Deck (일반국도상 교량 바닥판의 상태 현황분석 연구)

  • Oh, Kwang Chin;Lee, Jun Gu;Shin, Ju Yeoul;Chang, Buhm Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.93-101
    • /
    • 2012
  • Bridge deck has a role in a comfortable and safe passage of vehicles. At the same time, it preserves upper structure against the abrasion and shearing due to impact of traffic loads in bridges or has a role to protect the plate from off adverse effect of climatic process as rain, chemicals. Currently, the total number of inspected bridges is 6,248 in the general national road and to maintain effectively, Introduction of GPR system mounted in the vehicle has been considered. In this research, the comparison and analysis of bridge deck condition on general national road has been performed with major variations of superstructure type, span lengths, located region and ages by using 'the current status of road bridge and tunnel' that is provided by MLTM(Ministry of Land, Transport and Maritime Affairs). As a result, Condition assessment grade, superstructure type, age and length were derived as a major factor to determine priority for the condition assessment.

Fundamental Study on Analysis of the Bonding Effect on Asphalt Pavement (아스팔트포장의 경계층 영향에 대한 해석적 기초연구)

  • Choi, Jun-Seong
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.11-21
    • /
    • 2005
  • To examine adequacy of existing multi-layer elastic analysis of layer interface conditions, this study compared outputs of finite element analysis and multi-layer elastic analysis as vertical load was applied to the surface of asphalt pavements. Structural pavement analysis considering influence of a horizontal load was also carried out in order to simulate passing vehicle loads under various interface conditions using ABAQUS, a three dimensional finite element program. Pavement performance depending on interface conditions was quantitatively evaluated and fundamental study of layer interface effect was performed in this study. As results of the study, if only vertical load is applied, subdivision of either fully bonded or fully unbonded is enough to indicate interface condition. On the other hand, when horizontal load is applied with vertical load, pavement behavior and performance are greatly changed with respect to layer interface condition.

  • PDF