• Title/Summary/Keyword: Vehicle guidance

Search Result 329, Processing Time 0.026 seconds

Research And Design Of Guidance And Control System For Unmanned Surface Vessels

  • Nhat Duy Nguyen
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.31-40
    • /
    • 2023
  • This asymed drone controller is indispensable for two components: Guidance and Controller. In which the Ministry of Guidance will receive waypoints from which to form an orbit then combine the data with the current location of the vessel, thereby calculating and also supplying the controller to drive the vehicle to follow the outlined trajectory. This article will use the Line Of Sight (LOS) algorithm to design the Guidance and Controller sets. The result as well as the effectiveness of the controller will be shown through matlab/SIMULINK simulation.

Integrated Design of Rotary UAV Guidance and Control Systems Utilizing Sliding Mode Control Technique

  • Hong, You-Kyung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.90-98
    • /
    • 2012
  • In this paper, the Integrated Guidance and Control (IGC) law is proposed for the Rotary Unmanned Aerial Vehicle (RUAV). The objective of the IGC law is to consider the nonlinear dynamic characteristics of the RUAV and to design a guidance law which takes into consideration the nonlinear relationship between kinematics and dynamics. In order to control the RUAV system, sliding mode control scheme is adopted. As the RUAV is an under-actuated system, a slack variable approach is used to generate the available control inputs. Through the Lyapunov stability theorem, the stability of the proposed IGC law is proved. In order to verify the performance of the IGC law, numerical simulations are performed for waypoint tracking missions.

Analysis of Thrust Misalignments and Offsets of Lateral Center of Gravity Effects on Guidance Performance of a Space Launch Vehicle (추력비정렬 및 횡방향 무게중심 오프셋에 의한 우주발사체 유도 성능 영향성 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.574-581
    • /
    • 2019
  • This paper investigates the effects of thrust misalignments and offsets of the lateral center of gravity of a space launch vehicle on its guidance performance. Sensitivity analysis and Monte Carlo simulations are applied to analyze their effects by computing changes in orbit injection errors when including the error sources. To compensate their effects, the attitude controller including an integrator additionally and the Steering Misalignment Correction (SMC) routine of the Saturn V are considered, and then Monte Carlo simulations are performed to evaluate their performances.

A Methodology for Providing More Reliable Traffic Safety Warning Information based on Positive Guidance Techniques (Positive Guidance 기법을 응용한 실시간 교통안전 경고정보 제공방안)

  • Kim, Jun-Hyeong;O, Cheol;O, Ju-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This study proposed an advanced warning information system based on real-time traffic conflict analysis. An algorithm to detect and analyze unsafe traffic events associated with car-following and lane-changes using individual vehicle trajectories was developed. A positive guidance procedure was adopted to provide warning information to alert drivers to hazardous traffic conditions derived from the outcomes of the algorithm. In addition, autoregressive integrated moving average (ARIMA) analyses were conducted to investigate the predictability of warning information for the enhancement of information reliability.

Performance Analysis of a Flat-Earth Explicit Guidance Algorithm Applicable for Upper Stages of Space Launch Vehicles (발사체 상단 유도를 위한 단순화된 직접식 유도 방식 성능 분석)

  • Song, Eun-Jung;Cho, Sang-Bum;Park, Chang-Su;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.169-177
    • /
    • 2012
  • This paper considers the explicit guidance algorithm to determine the closed-loop guidance law applicable to upper stages of a given space launch vehicle. It has the advantage of very simple forms derived from the flat earth assumption, which is appropriate for its on-board application. However the simple time-to-go prediction equation produces the degraded guidance performance of the launcher because of its inaccuracy. To overcome the problem, the elaborate prediction equations, which have been employed in Saturn and H-II, are attempted here. Finally, the simulation results show that the simple guidance approach requires the more accurate time-to-go prediction and gravity integrals for its broad application.

Study of an Explicit Guidance Algorithm Applicable for Upper Stages of Space Launch Vehicles (발사체 상단의 외연적 유도 알고리듬 적용 연구)

  • Song, Eun-Jung;Cho, Sang-Bum;Park, Chang-Su;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2011
  • This paper considers improved IGM (Iterative Guidance Mode), one of the explicit guidance algorithms, to determine the guidance algorithm for upper stages of a space launch vehicle. IGM, which has been employed successfully for the Saturn to put its payload into the parking orbit and lunar transfer orbit, is applied here for guidance of the launcher during the second and third stages. The orbit injection accuracy is evaluated through the 3-DOF computer simulations and an accurate prediction method, which can eliminate the prediction error of the downrange position at the orbit injection, is also proposed here.

Running characteristics of rubber-tired AGT light rail vehicle (고무차륜 AGT 경량전철 차량의 주행특성 해석)

  • 김연수;백남욱;임태건
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.273-276
    • /
    • 2004
  • Dynamic model of the Korea standardized rubber-tired AGT light rail vehicle, and boundary conditions between vehicle and infrastructures (running track, guidance rail) were defined to analyze vehicular vibration behaviors occurred at the worst condition for straight running track. Using the commercialized software RecurDyn, resultant forces and vibration accelerations of car body and bogies were analyzed. Based on the Korea performance test criteria for urban transit, vertical and lateral vibration of car body were calculated and evaluated as wearing condition of guide wheels. And resultant forces between bogie guidance frame and guide rail in straight running track were analyzed. As the results, the Korea standardized rubber-tired AGT light rail vehicle satisfied the performance criteria and design requirement .

  • PDF

Parametric Study of Curved Guideways for Urban Maglev Vehicle (도시형 자기부상열차의 곡선 가이드웨이 매개변수 연구)

  • Han, Jong-Boo;Kim, Ki-Jung;Han, Hyung-Suk;Kim, Sung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.329-335
    • /
    • 2014
  • A maglev vehicle of middle-low speed subjected to both a lift force and a guidance force by a U-shaped single electromagnet is operated over a curved guideway without a guidance controller. Therefore, it is required to carefully decide the curve shape for preventing contact between the vehicle and the guiderail for the case that a Maglev vehicle is operated over a curved guideway with a small radius. Specifically, the shape of the transition curve is very important from the stability viewpoint. This study analyzes the influence of curve shape on maglev stability through parametric composition of the transition curve during vehicle guidance. To this end, a multibody dynamics-based threedimensional Maglev vehicle model was developed. The model was integrated with the vehicle, curved guideway, electromagnets, and their controllers. Using this model, a realistic parametric study including the curved guideway was carried out. The results of research should be considered usefully in the design of bogies and the curve shape.

Auto-Landing Guidance System Design for Smart UAV

  • Min, Byoung-Mun;Shin, Hyo-Sang;Tahk, Min-Jea;Kim, Boo-Min;Kim, Byoung-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 2006
  • This paper deals with auto-landing guidance system design applicable to Smart UAV(Unmanned Aerial Vehicle). The proposed guidance law generates horizontal position, velocity and altitude commands in the longitudinal channel and heading angle command in the lateral channel to track a predetermined trajectory for automatic landing. The longitudinal guidance commands are derived from an approximated dynamic equations in vertical plane. These longitudinal guidance commands are appropriately distributed to each control input as the flight mode of Smart UAV is changed. The concept of VOR(VHF Omni-directional Range) guidance system is applied to generate the required heading angle commands to eliminate the lateral deviation from the desired trajectory. The performance of the proposed guidance system for Smart UAV is evaluated using the nonlinear simulation. Simulation results show that the proposed guidance system for auto- landing provides good tracking performance along the predetermined landing trajectory.

Fuzzy Logic Controller Design for Lateral Vehicle Guidance (Lateral Vehicle Guidance를 위한 퍼지 로직 제어기의 설계)

  • Kim, Tai-Hyung;Huh, Kyung-Moo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1193-1195
    • /
    • 1996
  • For an automatic steering problem of vehicles, the main task is to keep a reference path with assumption that the displacement from the guideline can be measured by a sensor. In this paper, a sliding mode fuzzy logic controller design method is introduced and it shows highly enhanced performance in comparison with the other results. The method can be relatively simply implemented.

  • PDF