• 제목/요약/키워드: Vehicle fatigue

검색결과 384건 처리시간 0.023초

미소원공결함을 갖는 자동차 전류구동축재의 온도변화에 따른 피로크랙전파거동에 관한 연구 (A Study on the Fatigue Crack Propagation Behavior in F.F. Shaft Materials of Vehicle with Small Circular Defect at Variable Temperature)

  • 이상열;이동길;정재강
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.185-194
    • /
    • 1998
  • In this study, the rotary bending fatigue test was carried out with two kinds of material, S43C and S50C, using in the Front engine and Front drive wheels(F.F.) of vehicle. The one part of specimens was heated by high frequency induction method(about 1mm depth and $H_RC$ 56~60) and tested environment temperature were $-30^{\circ}C$, $+25^{\circ}C$ and $+80^{\circ}C$ in order to look over the influence of the heat treatment and the temperatures. In the experimented result at $+25^{\circ}C$ and $+80^{\circ}C$, the fatigue life of non-heated specimens were decreased about 35%, but that of heated specimens were decreased about only 5% at $+80^{\circ}C$ more than at $25^{\circ}C$. And in the experiment result at $-30^{\circ}C$ and $+25^{\circ}C$, the non-heated and heated specimens were about 110%, 120% higher fatigue life at $-30^{\circ}C$ than at the $+25^{\circ}C$ each other. On the other hand, the fatigue crack propagation rate of S50C was higher than that of S43C.

  • PDF

차량용 도어 힌지의 경량화를 위한 재질별 수명 예측 (Analysis on Life Prediction for Different Materials in Vehicle Door Hinge Lightweight Design)

  • 유기현;김홍건
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.693-699
    • /
    • 2013
  • Environmental issues are attracting increasing interest worldwide, and accordingly, environmental regulations for vehicles are being made more stringent. As a result, the car industry is conducting studies focusing on fuel efficiency and lightweight vehicles. To manufacture lightweight vehicles, existing steel parts are replaced by composite materials and lightweight metals. In this study, the fatigue life of a new material for manufacturing lightweight car door hinges was predicted using a finite-element analysis program. The existing steel material was replaced by carbon-fiber-reinforced plastic (CFRP) and aluminum alloy 6061, and the test results were analyzed. The maximum stress decreased by approximately three times, whereas the fatigue life and safety factor increased. When only CFRP was used, its allowable stress, safety factor, and fatigue life were excellent, but the sagging of the product exceeded the allowable value, which posed a limitation in use. Therefore, it seems desirable to use an appropriate combination of steel, AA6061, and CFRP for this product.

차체구조의 구조기인 내구 설계 (Structure Borne Durability Design of a Vehicle Body Structure)

  • 김효식;임홍재
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.109-121
    • /
    • 2004
  • This paper presents an optimal design method for structure-borne durability of a vehicle body structure. Structure-borne durability design requires a new design that can increase fatigue lives of critical areas in a structure and must prohibit transition phenomenon of critical areas that results from modification of the structure at the same time. Therefore, the optimization problem fur structure-borne durability design are consists of an objective function and design constraints of 2 types; type 1-constraint that increases fatigue lives of the critical areas to the required design limits and type 2-constraint that prohibits transition phenomenon of critical areas. The durability design problem is generally dynamic because a designer must consider the dynamic behavior such as fatigue analyses according to the structure modification during the optimal design process. This design scheme, however, requires such high computational cost that the design method cannot be applicable. For the purpose of efficiency of the durability design, we presents a method which carry out the equivalent static design problem instead of the dynamic one. In the proposed method, dynamic design constraints for fatigue life, are replaced to the equivalent static design constraints for stress/strain coefficients. The equivalent static design constraints are computed from static or eigen-value analyses. We carry out an optimal design for structure-borne durability of the newly developed bus and verify the effectiveness of the proposed method by examination of the result.

하중작용방식에 따른 차체용 점용접체의 피로특성에 관한 연구 (A Study on the Fatigue Characteristics of Spot Weld Specimen use in Vehicle Body as the Applied Load Pattern)

  • 송삼홍;배준수;장성재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.668-671
    • /
    • 1995
  • In this study, the fatigue charateristics of weld specimen was studied experimentally by using the various specimen types. The specimen type were tensile shesr(TS) specimen, cross tension(CT) specimen, and T typr (TT) specimen. Tensile test and fatigue test were carried out and microstucture was investigated. Finite element method was used to investigate stress distribution near nugget edge. Finally fracture mechanics approach was tried to the various specimen types.

  • PDF

A Study on Fatigue Damage Modeling Using Neural Networks

  • Lee Dong-Woo;Hong Soon-Hyeok;Cho Seok-Swoo;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제19권7호
    • /
    • pp.1393-1404
    • /
    • 2005
  • Fatigue crack growth and life have been estimated based on established empirical equations. In this paper, an alternative method using artificial neural network (ANN) -based model developed to predict fatigue damages simultaneously. To learn and generalize the ANN, fatigue crack growth rate and life data were built up using in-plane bending fatigue test results. Single fracture mechanical parameter or nondestructive parameter can't predict fatigue damage accurately but multiple fracture mechanical parameters or nondestructive parameters can. Existing fatigue damage modeling used this merit but limited real-time damage monitoring. Therefore, this study shows fatigue damage model using backpropagation neural networks on the basis of X -ray half breadth ratio B / $B_o$, fractal dimension $D_f$ and fracture mechanical parameters can estimate fatigue crack growth rate da/ dN and cycle ratio N / $N_f$ at the same time within engineering limit error ($5\%$).

실험계획법을 적용한 Lower Control Arm의 피로수명 형상 최적설계 (Shape Optimization for Improving Fatigue Life of a Lower Control Arm Using the Experimental Design)

  • 김민수;이창욱;손성효;임홍재;허승진
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.161-166
    • /
    • 2003
  • In order to improve the fatigue lift of a lower control arm in the vehicle suspension, a new shape optimization procedure is presented. In this approach, the shape control point concept is introduced to reduce the numbers of shape design variables. Also, the two-level orthogonal way is employed to evaluate the design sensitivity of fatigue life with respect to those shape design variables, because the analytical design sensitivity information is not directly supplied from the commercial CAE softwares. In this approach, only the six design variables are used to approximate the shape of lower control arm. Then, performed are only 10 fatigue life analyses including the baseline design, 8 DOE models and the final design. The final design, the best combination obtained from the sensitivity information, can maximize the fatigue lift nearly two times as that of the baseline design, while reducing the 12 percentage of weight than it.

저비중 SMC 외장패널의 피로특성 평가 (An Evaluation of the Fatigue Properties for External Panel Using Low Density SMC)

  • 김은성
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.830-835
    • /
    • 2012
  • A research for application of LDSMC(Low Density Sheet Molding Compound) composite is in progress for lightening the weight. This paper has performed fatigue test and simulation of external panel for Korean commercial vehicle. Before the fatigue test, static test was carried out. From the test, the structural safety was investigated using Goodman diagram. After the static test performance, the fatigue test was conducted at a range of load frequency 5Hz, a stress ratio(R) of 0.05 and an endurance limit of $10^6$ to obtain the S-N curve. The S-N curve is applied to the fatigue analysis of the external panel assembly. The result of FEM analysis was in accord with the experimental result within 83% confidence. It showed that the process to set up the safety range of allowable error is required in process of the design and simulation verification.

철도차량 구조물용 연강(SM490A)의 기계적 내한 특성 연구 (A Study on the Low Temperature Mechanical Characteristics of SM490A for the Railroad Vehicle Structure)

  • 강기원;구병춘;유원희;김재훈
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.695-700
    • /
    • 2006
  • This study investigates the effects of the material properties and the fatigue behavior in the SM490A material specimens due to the low-temperature atmosphere. In the fatigue behavior, the low-temperature affects the fatigue life. As the temperature get low, the fatigue limit increase, also As the yield strength and the tensile strength increase, the impact absorbed energy decrease. The difference of fatigue lift represents to normal distribution and it is larger between the room temperature and the low temperature, but in the result of the cumulative density function, the effect of temperature is not too large on it.

용접 비드 형상을 이용한 용접 시편의 피로수명 예측 연구 (A Study on the Fatigue Life Estimation Using Butt Weld Bead Profiles)

  • 김재훈;구병춘
    • 한국철도학회논문집
    • /
    • 제7권2호
    • /
    • pp.125-129
    • /
    • 2004
  • This study investigates the fatigue lift estimation of butt weld specimen for the railway vehicle by examining butt weld bead profiles. The butt weld beads, which are welded by semi-robot method, have non-uniform bead profiles described by $\theta$, p and h. The stress concentration factors, K$\_$t/, are changed by different $\theta$, p and h from 1.395 to 2.863. Hence, the sensitivity of K$\_$k/ is changed by each $\theta$, p and h. As $\theta$ becomes lower and p and h become higher, K$\_$t/ increases. The fatigue life can be estimated very closely for the AAY specimens without residual stress using only butt weld bead profiles. But, for the AAN specimens with residual stress, the fatigue life must be estimated by considering both the weld bead profiles and the residual stress data.

철도 차축재료의 프레팅 피로거동 평가 (Evaluation of Fretting Fatigue Behavior for Railway Axle Material)

  • 최성종;권종완
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.139-145
    • /
    • 2007
  • Fretting is a kind of surface damage mechanism observed in mechanically jointed components and structures. The initial crack under fretting damage occurs at lower stress amplitude and lower cycles of cyclic loading than that under plain fatigue condition. This can be observed in automobile and railway vehicle, fossil and nuclear power plant, aircraft etc. In the present study, railway axle material RSA1 used for evaluation of fretting fatigue life. Plain and fretting fatigue tests were carried out using rotary bending fatigue tester with proving ring and bridge type contact pad. Through these experiments, it is found that the fretting fatigue limit decreased about 37% compared to the plain fatigue limit. In fretting fatigue, the wear debris is observed on the contact surface, and oblique cracks at an earlier stage are initiated in contact area. These results can be used as useful data in a structural integrity evaluation of railway axle.