• 제목/요약/키워드: Vehicle driving simulator

검색결과 247건 처리시간 0.027초

VEHICLE ELECTRIC POWER SIMULATOR FOR OPTIMIZING THE ELECTRIC CHARGING SYSTEM

  • Lee, Wootaik;Sunwoo, MyoungHo
    • International Journal of Automotive Technology
    • /
    • 제2권4호
    • /
    • pp.157-164
    • /
    • 2001
  • The vehicle electric power system, which consists of two major components: a generator and a battery, which have to provide numerous electrical and electronic systems with enough electrical energy. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight is required when the capacities of the generator and the battery are to be determined for a vehicle. An easy-to-use and inexpensive simulation program may be needed to avoid the over/under design problem of the electric power system. A vehicle electric power simulator is developed in this study. The simulator can be utilized to determine the optimal capacities of generators and batteries. To improve the expandability and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC. Empirical electrical models of various generators and batteries, and the structure of the simulation program are presented. For executing the vehicle electric power simulator, data of engine speed profile and electric loads of a vehicle are required, and these data are obtained from real driving conditions. In order to improve the accuracy of the simulator, numerous driving data of a vehicle are logged and analyzed.

  • PDF

Development of a Washout Algorithm for a Vehicle Driving Simulator Using New Tilt Coordination and Return Mode

  • You Ki Sung;Lee Min Cheol;Kang Eugene;Yoo Wan Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제19권spc1호
    • /
    • pp.272-282
    • /
    • 2005
  • A vehicle driving simulator is a virtual reality device which makes a man feel as if he drove an actual vehicle. Unlike actual vehicles, the simulator has limited kinematical workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model. In order to overcome these problems, a washout algorithm which controls the workspace of the simulator within the kinematical limitation is needed. However, a classical washout algorithm contains several problems such as generation of wrong sensation of motions by filters in tilt coordination, requirement of trial and error method in selecting the proper cut-off frequencies and difficulty in returning the simulator to its origin using only high pass filters. This paper proposes a washout algorithm with new tilt coordination method which gives more accurate sensations to drivers. To reduce the time in returning the simulator to its origin, an algorithm that applies selectively onset mode from high pass filters and return mode from error functions is proposed. As a result of this study, the results of the proposed algorithm are compared with the results of classical washout algorithm through the human perception models. Also, the performance of the suggested algorithm is evaluated by using human perception and sensibility of some drivers through experiments.

차량 운전 시뮬레이터에서 모션과 영상의 동기화를 위한 알고리즘 및 구현 방안 (Motion and Image Matching Algorithms and Implementation for Motion Synchronization in a Vehicle Driving Simulator)

  • 김헌세;김대섭;김동환
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.184-193
    • /
    • 2017
  • This work shows how to create an algorithm and implementation for motion and image matching between a vehicle simulator and Unity 3D based virtual object. The motion information of the virtual vehicle is transmitted to the real simulator via a RS232 communication protocol, and the motion is controlled based on the inverse kinematics solution of the platform adopting rotary-type six actuators driving system. Wash-out filters to implement the effective motion of the motion platform are adopted, and thereby reduce the dizziness and increase the realistic sense of motion. Furthermore, the simulator system is successfully designed aiming to reducing size and cost with adaptation of rotary-type six actuators, real driving environment via VR (Virtual Reality), and control schemes which employ a synchronization between 6 motors and 3rd order motion profiles. By providing relatively big sense of motion particularly in impact and straight motions mainly causing simulator sickness, dizziness is remarkably reduced, thereby enhancing the sense of realistic motion.

험로 주행용 무인차량과 차량 시뮬레이터의 융합을 위한 퍼지 알고리즘 개발 (Fuzzy Algorithm Development for the Integration of Vehicle Simulator with All Terrain Unmanned Vehicle)

  • 윤득선;유환신;임하영
    • 지능정보연구
    • /
    • 제11권2호
    • /
    • pp.47-57
    • /
    • 2005
  • 본 논문에서는 험로를 주행하는 무인 자동차의 운동을 재현하는 차량 시뮬레이터의 운동큐를 생성함에 있어서 중요한 인자들을 결정할 때 충실한 재현을 위하여 필터를 적용하였다. 그러나 필터의 성능한계와 차량운동을 재현하는 워시아웃 알고리즘의 한계를 극복하기 위한 방안으로 퍼지논리를 이용한 필터의 설계를 하여 실차 실험에 적용하였고 향후의 연구방향을 제시하였다.

  • PDF

차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법 (Real-Time Analysis of Occupant Motion for Vehicle Simulator)

  • 오광석;손권;최경현
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.

가상주행시험장(SVPG) 개발: 가상주행시험장의 시스템 구성 및 운영 (Development of the SVPG(Sungkyunkwan Univ. Virtual Proving Ground) : System Configuration and Application of the Virtual Proving Ground)

  • 서명원;구태윤;권성진;신영수;조기용;박대유
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.195-202
    • /
    • 2002
  • By using modeling and simulation. today's design engineers are simultaneously reducing time to market and decreasing the cost of development, while increasing the quality and reliability of their products. A driving simulator is the best example of this method and allows virtual designs of control systems, electronic systems, mechanical systems and hydraulic system of a vehicle to be evaluated before costly prototyping. The objective of this Paper is to develop the virtual Proving: ground using a driving simulator and to show its capabilities of an automotive system development tool. For this purpose, including a real-time vehicle dynamics analysis system, the PC-based driving simulator and the virtual proving ground are developed by using VR(Virtual Reality) techniques. Also ABS HIL(Hardware-In-the-Loop ) simulation is performed successfully.

감성공학 기법을 이용한 차량 시뮬레이터의 동적 성능 향상에 대한 연구 (Improvement of Dynamic Performance of Vehicle Simulator Using Human Sensibility Ergonomics)

  • 이상철;엄성숙;손권;최경현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.312-312
    • /
    • 2000
  • Human sensibility ergonomics is applied to evaluation of dynamic performance of a vehicle driving simulator. Vehicle, driving environment, and human perception models are constructed and integrated. Driving simulations are carried out based on these models. This study defines a set verbal expressions collected and investigates which are the most appropriate for describing the fidelity of translational and angular accelerations of the driving simulator. An statistical analysis is uscd to find correlation between the ergonomic sensibility and the cut-off frequency of the washout algorithm. This study suggests a methodology to obtain an ergonomic database which can be used for the performance evaluation of dynamic environments.

  • PDF

ROS 기반 자율주행 알고리즘 성능 검증을 위한 시뮬레이션 환경 개발 (Development of Simulation Environment for Autonomous Driving Algorithm Validation based on ROS)

  • 곽지섭;이경수
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.20-25
    • /
    • 2022
  • This paper presents a development of simulation environment for validation of autonomous driving (AD) algorithm based on Robot Operating System (ROS). ROS is one of the commonly-used frameworks utilized to control autonomous vehicles. For the evaluation of AD algorithm, a 3D autonomous driving simulator has been developed based on LGSVL. Two additional sensors are implemented in the simulation vehicle. First, Lidar sensor is mounted on the ego vehicle for real-time driving environment perception. Second, GPS sensor is equipped to estimate ego vehicle's position. With the vehicle sensor configuration in the simulation, the AD algorithm can predict the local environment and determine control commands with motion planning. The simulation environment has been evaluated with lane changing and keeping scenarios. The simulation results show that the proposed 3D simulator can successfully imitate the operation of a real-world vehicle.

4가지 선회보조 장치가 운전 성능에 미치는 영향: 장애 유무와 운전면허 유무에 따른 비교 (Influence of Four Types of Steering Assistive Devices on Driving Performance: Comparison of Normal and Disabled People with and without Driver's License)

  • 송정헌;김용철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권1호
    • /
    • pp.32-42
    • /
    • 2017
  • The aim of this study was to evaluate driving performance of Healthy and disabled groups (with or without driver's license) to control steering wheel by using steering assistive devices in the driving simulator. The persons with partial loss of use of all four limbs have problems in operation of the motor vehicle because of functional loss to operate steering wheel. Therefore, if steering assistive devices for grasping the steering wheel are used to control the vehicle on the road in persons with disabilities, the disabled persons can improve mobility in their community life by driving a motor vehicle safely. Ten healthy subjects (with or w/o driver's license) and ten subjects with physical disabilities (with or w/o driver's license) were involved in this study to evaluate driving performance to operate steering wheel by using four types of steering assistive devices (Single-pin, V-grip, Palm-grip, Tri-pin) in driving simulator. STISim Drive 3 software was used to test the steering performance in four scenarios: straight road at low and high speed of vehicle (40 km/h and 80 km/h), curved road at low and high speed of vehicle (40 km/h and 80 km/h). This study used two-way ANOVA in order to compare the effects of two factors (type of steering assistive device and subject group) in the three dependent variables of driving performance (the lateral position of vehicle, standard deviation of lateral position representing the variation of the left and right movement of the vehicle and the number of line crossing). The mean values of the three dependent variables (lateral position, standard deviation of lateral position, the number of line crossing) of steering performance were statistically significantly smaller for the healthy or disabled groups with driver's license than the other groups without driver's license on the curved road at high speed of vehicle compared to low speed of vehicle.

PXI embedded real-time controller를 이용한 Bimodal-tram Simulator (Bimodal-tram Simulator using PXI Embedded Real-time Controllers)

  • 변윤섭;김영철
    • 전기학회논문지
    • /
    • 제59권3호
    • /
    • pp.645-650
    • /
    • 2010
  • In this paper we present the Bimodal-tram simulator using the PXI embedded real-time controllers. The Bimodal-tram is developed in KRRI (Korea Railroad Research Institute). The vehicle can be automatically operated by navigation control system (NCS). For the automatic driving, the vehicle lanes will be marked with permanent magnets that are placed in the ground. The vehicle is controlled by NCS. NCS governs the manual mode and automatic mode driving. The simulator is designed by an identical conception with the real control condition. The dynamic motion of vehicle is simulated by the nonlinear dynamic model. The control computer calculates the control values. The signal interface is linked by CAN communication. The simulation is processed by real-time base. The test driver can see the graphic motion of vehicle and can operate the steering wheel, gas and brake pedal to control direction and velocity of vehicle during the simulation. At present, the simulator is only operated by manual mode. The automatic mode will be linked after the control algorithm is finished. We will use the simulator to develop the control algorithm in the automatic mode. This paper shows the simulator designed for Bimodal-tram using real-time based controller. The results of the test using the simulator are presented and discussed.