• Title/Summary/Keyword: Vehicle driving simulator

Search Result 245, Processing Time 0.033 seconds

Driving simulator : a vehicle development tool (차량시스템 개발도구로서의 운전시뮬레이터)

  • 이운성;김상섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.2-9
    • /
    • 1994
  • 본 해설에서는 필자가 참여한 여러해에 걸쳐 수행된 실시간 차량시뮬레이션 및 운전시뮬레이터 연구프로젝트를 토대로 운전시뮬레이터의 역사적 배경, 구성 및 기술현황을 알아보고, 이의 응용분야를 소개하고자 한다. 차량의 새부품 개발에서부터 위급한 상황에서의 운전자 반응연구까지 폭 넓은 분야의 시험을 효과적이고 경제적으로 수행할 수 있는 운전시뮬레이터는 신차의 개발비용 및 시간절감 효과를 가져오는 차량시스템 개발의 종합적인 도구로써 그 위치를 공고히 해가고 있어, 우리나라에서도 그 중요성 및 필요성이 어느 때보다도 크다. 운전시뮬레이터는 재현하는 큐의 현실감 정도에 따라 제작비용의 차이가 매우 크기 때문에, 적용분야에 따른 필요한 큐를 상세히 검토하여야 한다.

  • PDF

Development of efficient vehicle simulation program for construction of driving simulator (운전시뮬레이터의 구성을 위한 효율적인 차량시뮬레이션 프로그램의 개발)

  • 이광표;윤용산
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.12-18
    • /
    • 1994
  • 본 연구에서는 운전 시뮬레이터의 구성에 이용될 효율적인 차량 시뮬레이션 프로그램을 개발하기 위해 세가지 방법으로 연구를 수행하였다. 우선 효율적인 운동방정식의 구성을 위해 부호계산용 상용프로그램 MACSYMA를 이용하여 다물체게의 운동방정식을 부호적으로 유도하는 운동방정식 유도 프로그램을 구성하였고, 이를 이용하여 15자유도의 다물체 차량모델에 대해 시뮬레이션 프로그램을 개발하였다. 또한 차량모델을 개선하여 가면서 계산시간을 줄였으며, 차량시뮬레이션 프로그램에서 이용될 효율적인 수치해법을 결정하였다.

  • PDF

Development of Hardware-in-the-Loop Simulator for EHB Systems (EHB 시스템을 위한 Hardware-in-the-Loop 시뮬레이터 개발)

  • 허승진;박기홍;이해철;김태우;김형수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1139-1143
    • /
    • 2003
  • HILS(Hardware-In-the-Loop Simulation) is a scheme that incorporates hardware components of primary concern in the numerical simulation environment. Due to its advantages over actual vehicle test and pure simulation, HILS is being widely accepted in automotive industries as test benches for vehicle control units. Developed in this study is a HILS system for EHB(Electro-Hydraulic Brake) systems that include a high pressure generator and a valve control system that independently modulates the brake pressures at four wheels. An EHB control logic was tested in the HILS system. Test results under various driving conditions are presented and compared with the VDC logic.

  • PDF

Development of Hardware-in-the-Loop Simulation System for Use in Design and Validation of VDC Logics

  • Park, Kihong;Heo, Seung-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.28-35
    • /
    • 2003
  • The objective of the Vehicle Dynamics Control (VDC) system is to maintain vehicle stability under critical lateral motions, It has a good potential of becoming one of the chassis control necessities since the system can be realized with little additional cost on top of the ABS/TCS system, Developed in this research is a hardware-in-the-loop simulator for VDC with a valve control system that modulates the brake pressures at four wheels: Two VDC control logics, a simple control logic and an LQR control logic, have been developed and incorporated in the HILS system. Their performance under various driving conditions was tested in the HILS system and the results are presented.

Capturing and Modeling of Driving Skills Under a Three Dimensional Virtual Reality System Based on Hybrid System

  • Kim, Jong-Hae;Hayakawa, Soichiro;Suzuki, Tatsuya;Hirana, Kazuaki;Matsui, Yoshimichi;Okuma, Shigeru;Tsuchida, Nuio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2747-2752
    • /
    • 2003
  • This paper has develops a new framework to understand the human’s driving maneuver based on the expression as HDS focusing on the driver’s stopping maneuver. The driving data has been collected by using the three-dimensional driving simulator based on CAVE, which provides three-dimensional visual information. In our modeling, the relationship between the measured information such as distance to the stop line, its first and second derivatives and the braking amount has been expressed by the PWPS model, which is a class of HDS. The key idea to solve the identification problem was to formulate the problem as the MILP with replacing the switching conditions by binary variables. From the obtained results, it is found that the driver appropriately switches the ‘control law’ according to the following scenario: At the beginning of the stopping behavior (just after finding the stopping point), the driver decelerate the vehicle based on the acceleration information, and then switch to the control law based on the distance to the stop line.

  • PDF

PSIM Simulator for Analysis of Series HEV Operation (직렬형 HEV 운전 특성 분석을 위한 PSIM 시뮬레이터)

  • Lim, Deok-Young;Im, Jae-Kwan;Choi, Jae-Ho;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.487-497
    • /
    • 2010
  • This paper describes the PSIM simulator for the analysis of the series type HEV operation. The traction force of the series type HEV of which engine is electrically coupled with a traction motor is supplied from the traction motor only. The rating of each power train components, such as gear, motor, ESS, ICE/generator, is designed with the Energy-Based Modeling method and the Electrical Peaking Hybrid(ELPH) method. Under driving cycle, the designed series HEV is evaluated with the developed PSIM simulator. A comparison between the conventional braking and the regenerative braking is performed with the average motor input power. And the fuel economy analysis is carried out on the basis of the simulation results.

A Dynamic Test Facility for Mobile Air Conditioning Systems

  • Gado, Amr;Hwang, Yun-Ho;Radermacher, Reinhard
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.4
    • /
    • pp.147-155
    • /
    • 2007
  • Mobile air conditioning systems work under widely changing operating conditions. To understand the system behavior under such dynamic conditions, a test facility that can impose transient loads as well as conducting dynamic measurements is needed. To test mobile air conditioning systems including their dynamic performance under various drive cycle patterns without using full scale vehicles in a wind tunnel, a new test facility, called "dynamic simulator," is described. It can replicate real vehicle operating conditions by interacting with the system being tested based on the measured system performance and subsequently adjusting the air properties returning to the test system based on the results of a numerical cabin model. A new dynamic simulator has been designed, constructed, and verified for performing dynamic tests. It was successful in controlling the temperature and relative humidity of the air returning to the test unit within ${\pm}0.7^{\circ}C$ and ${\pm}4%$ of their respective intended values. The verification test under the New European Driving Cycle demonstrated that detailed transient behavior of the mobile air conditioning system could be measured by using this dynamic simulator.

Effects of Secondary Tasks on Vehicle Speed and Distance during Driving and Brake Response Time during Unexpected Situation

  • Lee, Su-Jeong;Yang, Jae-Woong;Kim, Ji-Hye;Choi, Mi-Hyun;Kim, Han-Soo;Choi, Jin-Seung;Min, Byung-Chan;Tack, Gye-Rae;Chung, Soon-Cheol
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.3
    • /
    • pp.403-408
    • /
    • 2011
  • The purpose of this study was to investigate the effects of the secondary tasks such as sending text message(STM) and searching navigation(SN) on vehicle speed and distance during driving and brake response time during unexpected situation using a driving simulator. The participants included 19 college students; 9 males aged $25.2{\pm}1.0$ with $2.4{\pm}2.0years$ of driving experiences and 10 females aged $21.4{\pm}0.5$ with $1.3{\pm}0.5years$ of driving experiences. All subjects were instructed to keep a certain distance(30m) from the car ahead and a constant speed(100km/h). Average speed and average following distance were measured during 10 seconds before unexpected situation. Also, brake response time after unexpected situation was measured. Average speed was more decreased and average following distance was more increased during the driving with secondary tasks than driving only. Male maintained the assigned speed and distance better than female. The brake response time was faster during driving only than the driving with secondary tasks. And the brake response time of male was shorter than that of female.

Effects of Agent Interaction on Driver Experience in a Semi-autonomous Driving Experience Context - With a Focus on the Effect of Self-Efficacy and Agent Embodiment - (부분자율주행 체험환경에서 에이전트 인터랙션 방식이 운전자 경험에 미치는 영향 - 자기효능감과 에이전트 체화 효과를 중심으로 -)

  • Lee, Jeongmyeong;Joo, Hyehwa;Choi, Junho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.361-369
    • /
    • 2019
  • With the commercialization of the ADAS functions, the need for the experience of the autonomous driving system is increasing, and the role of the artificial intelligence agent is attracting attention. This study is an autonomous driving experience experiment that verifies the effect of self-efficacy and agent embodiment. Through a simulator experiment, we measured the effect of existence of self-efficacy and agent embodiment on social presence, perceived risk, and perceived ease of use. Results show that self-efficacy had a positive effect on social presence and perceived risk, and agent embodiment negatively affected perceived ease of use. Based on the results of the study, we proposed guidelines for agent design that can increase the acceptance of the semi-autonomous driving system.

Development of a Methodology for Detecting Intentional Aggressive Driving Events Using Multi-agent Driving Simulations (Multi-agent 주행 시뮬레이션을 이용한 운전자 주행패턴을 반영한 공격운전 검지기법 개발)

  • KIM, Yunjong;OH, Cheol;CHOE, Byongho;CHOI, Saerona;KIM, Kiyong
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.51-65
    • /
    • 2018
  • Intentional aggressive driving (IAD) is defined as a hazardous driving event that the aggressive driver intentionally threatens neighbor drivers with abrupt longitudinal and lateral maneuvering. This study developed a methodology for detecting IAD events based on the analysis of interactions between aggressive driver and normal driver. Three major aggressive events including rear-close following, side-close driving, and sudden deceleration were analyzed to develop the algorithm. Then, driving simulation experiments were conducted using a multi-agent driving simulator to obtain data to be used for the development of the detection algorithm. In order to detect the driver's intention to attack, a relative evaluation index (Erratic Driving Index, EDI) reflecting the driving pattern was derived. The derived IAD event detection algorithm utilizes both the existing absolute detection method and the relative detection method. It is expected that the proposed methodology can be effectively used for detecting IAD events in support of in-vehicle data recorder technology in practice.